

Optimierung Kraftwerk Aarau

Bau- und Auflageprojekt

Neues Flusskraftwerk Aarau

Beilage 3.9 zum Technischen Bericht

Entwässerungskonzept

Impressum

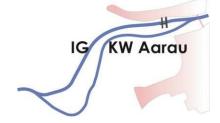
Auftraggeber Eniwa Kraftwerk AG

Industriestrasse 25

5033 Buchs

Projektleitung: Hansjürg Tschannen

Auftragnehmer IG KW Aarau


c/o IUB Engineering AG

Belpstrasse 48 3011 Bern

IUB Engineering AG Belpstrasse 48 Postfach CH-3000 Bern 14

Autoren

IG KW Aarau

IUB Engineering AG Belpstrasse 40 3014 Bern Dr. Peter Billeter Luzia Meier

IM Maggia Engineering AG Via St. Franscini 5 6601 Locarno

Urs Müller Dr. Matteo Federspiel

Umwelt

Sigmaplan AG Thunstrasse 91 3006 Bern Thomas Wagner Dino Andrini

Auflistung der Versionen und Änderungen

Version	Datum	Status/ Änderungen	Erstellt	Geprüft	Freigegeben
0.1	17.07.2020	Entwurf	UM/Fed	UM	Bil
1.0	06.04.2021	Gesuch (Auflage Projekt 2021)	UM/Fed	UM	Bil

Inhaltsverzeichnis

1	Eir	nleitung	5			
1.1 1.2		sgangslage und Zielsetzung esetzliche Bestimmungen und Grundlagen	5 5			
2	Sit	uation heute (Ist-Zustand)	6			
3	Au	swirkungen Bauphase	7			
4	Au	swirkungen Betriebsphase	7			
4.1 4.2 4.3 4.4 4.5 4.6	Turbiniertes Wasser Wassergefährdete Flüssigkeiten Drainagewasser Entleerungswasser Häusliche Abwasser Meteorwasser		7 7 8 9 9			
5	Sc	hlussfolgerungen	10			
Anhan	g 1:	Grundwasserkarte	11			
Anhang 2: Anhang 3: Anhang 4:		Gewässerschutzkarte	12			
		Konzept Ableitung Meteorwasser				
		Konzept Ableitung Drainagewasser und Abwasser	14			
Anhan	g 5:	Stoffe und Mengen nach StFV				
Anhan	g 6:	Gefahrenanalyse	16			

1 Einleitung

1.1 Ausgangslage und Zielsetzung

Eniwa plant die Erneuerung des Wasserkraftwerks Aarau an der Aare. Das im Herbst 2013 aufgelegte Erneuerungsprojekt wurde 2014, respektive 2015 von den beiden Kantonen Solothurn und Aargau bewilligt. In der Folge haben Umwelt- und Fischereiverbände Einsprache gegen den Entscheid des Aargauer Regierungsrates eingelegt. 2016 wurde diese Einsprache durch das Aargauer Verwaltungsgericht vollumfänglich abgelehnt. Die Einsprache hat jedoch dazu geführt, dass Eniwa die Thematik Fischgängigkeit nochmals intensiv betrachtet hat. Wir sind dabei zum Schluss gekommen, dass spätestens mit dem Retrofit der vier Turbinen der Zentrale 1 im Jahre 2035 ein grösseres Problem für die Erstellung einer Fischlenkung und des Fischabstiegs für das Kraftwerkslayout 2013 entstünde. Schon vor der Annahme der Konzession wurde mit den beiden Regierungsräten die Problematik erörtert und die geplanten Projektanpassungen für die Kraftwerkszentrale vorgestellt.

Die Konzession für das Wasserkraftwerk Aarau ist seit 1.1.2018 in Kraft und dauert bis zum 31.12.2085. Seit Beginn der Planung und der Auflage im Jahr 2013 haben sich die Rahmenbedingungen im Strommarkt und auch die regulatorischen Vorgaben für die Nutzung der Wasserkraft stark verändert. Eniwa hat nun die Projektanpassungen 2021 in den letzten zwei Jahren ausgearbeitet und hinsichtlich eines kontinuierlichen und nachhaltigen Betriebs bis zum Ende der Konzessionsdauer im Jahr 2085 optimiert.

Der Grossteil des bewilligten Projektes von 2013 wird beibehalten und realisiert. Im Bereich Kraftwerkszentrale werden anstelle der elf alten Turbinen, drei neue, fischfreundliche, effiziente Rohr-Turbinen und zwei Wehrklappen zur Hochwasser- und Schwallentlastung eingebaut. Um die Strömung im Kanal weiter zu optimieren und den Höhenverlust zwischen dem Stauziel beim Wehr und dem Kraftwerkseinlauf zu minimieren, wird der restliche Mitteldamm nun auch entfernt. Diese Massnahmen führen zur erheblichen Mehrproduktion von über 21 Prozent und tieferen Betriebskosten. Die vertraglich relevanten Konzessionsparameter gemäss bewilligtem Projekt bleiben in ihrer Gültigkeit unverändert bestehen.

Das überarbeitete Erneuerungsprojekt mit der Optimierung Kraftwerk Aarau wird mit den vorliegenden Akten zur 2. Vorprüfung bei den beiden Kantonen Solothurn und Aargau eingegeben. Das vorliegende **Entwässerungskonzept** für die Neuanlage lehnt sich an die bereits im Jahre 2015/16 genehmigte Anlage an. Die entsprechenden Massnahmen und Auflagen zum Projekt 2013 sind in die Planung der Neuanlage eingeflossen.

1.2 Gesetzliche Bestimmungen und Grundlagen

Rechtliche Grundlagen (Bund)

GSchG: Bundesgesetz über den Schutz der Gewässer vom 24. Januar 1991

GSchV: Gewässerschutzverordnung vom 26. Oktober 1998

Rechtliche Grundlagen Kanton Aargau

• EG UWR: Einführungsgesetz zur Bundesgesetzgebung über den Schutz von Um-

welt und Gewässer

V EG UWR: Verordnung zum Einführungsgesetz zur Bundesgesetzgebung über

den Schutz von Umwelt und Gewässer

Rechtliche Grundlagen Kanton Solothurn

GWBA: Gesetz über Wasser, Boden und Abfall vom 04.03.2009

IG KW Agrau

Weitere Grundlagen

- Entwässerung von Baustellen gemäss SIA/VSA 431
- Ordner «Siedlungsentwässerung»
- Merkblatt «Regenwasserentsorgung im Siedlungsgebiet»
- Wegleitung Grundwasserschutz, BAFU 2004
- Regenwasserentsorgung: Richtlinie zur Versickerung, Retention und Ableitung von Niederschlagswasser in Siedlungsgebieten, VSA (Verband Schweizer Abwasserund Gewässerschutzfachleute).

2 Situation heute (Ist-Zustand)

Der heutige Mittelbau ist über die Leitung Kraftwerksbrücke-Süffelsteg an die städtische Kanalisation angeschlossen. Der Mittelbau enthält alle sanitären Einrichtungen des Kraftwerks. Die Gebäudeteile der Zentralen 1 und 2 sind nicht an die Kanalisation angeschlossen (keine sanitären Einrichtungen).

Das Meteorwasser wird mehrheitlich in die Aare abgeleitet. Verschmutztes Betriebswasser wird in den Pumpenschächten innerhalb der Zentralen gesammelt und von dort in die Kanalisation eingeleitet. Unverschmutztes Drainagewasser und Entleerungswasser der Turbinen im Revisionsfall wird direkt in die Aare abgeleitet.

Die Zentrale Aarau befindet sich im Gewässerschutzbereich Au innerhalb einem Grundwassergebiet. Die Grundwasser- und Gewässerschutzkarte sind im Anhang 1 und 2 dargestellt. Nach dem Gewässerschutzgesetz (GSchG) ist der Gewässerschutzbereich Au ein besonders gefährdetes Gebiet und umfasst die nutzbaren unterirdischen Gewässer sowie die zu ihrem Schutze notwendigen Randgebiete. Dazu gehören sämtliche Grundwasserleiter mit nutzbarem Grundwasser.

Circa 640 m flussabwärts vom Maschinenhaus liegen zahlreiche Grundwasserfassungen, die der Trinkwassergewinnung dienen. Die auf der Insel gelegene Grundwasserfassung wurde im Jahre 2018 stillgelegt.

Gemäss Gewässerschutzgesetz ist im Gewässerschutzbereich besondere Sorgfalt anzuwenden, um nachhaltige Auswirkungen auf das Gewässer und demzufolge auf das Grundwasser zu vermeiden.

Im Kraftwerksareal fallen folgende Arten von Flüssigkeiten an:

- Turbiniertes Wasser
- Wassergefährdende Flüssigkeiten
- Drainagewasser (Leckage-, Sicker- und Sperrwasser)
- Entleerungswasser
- Häusliches Abwasser
- Meteorwasser (Platz- und Dachwasser)

Das Konzept für die Behandlung des Meteorwassers und des Drainagewassers und Abwassers der Zentrale sind im Anhang 3 und 4 dargestellt.

3 Auswirkungen Bauphase

Das Projekt bedingt mehrere Installationsplätze und Baustellen. Während der Bauphase könnten Gewässer durch die unsachgemässe Handhabung von wassergefährdeten Flüssigkeiten, durch die Entwässerung der Bau- und Installationsplätze, bei der Wartung der Baumaschinen, bei Betonarbeiten und bei Unfällen mit wassergefährdeten Stoffen verunreinigt werden. Um dies zu verhindern wird vor Baubeginn ein detailliertes Entwässerungskonzept der Baustelle gemäss SIA Norm 431 (Bestandteil Submission) erarbeitet und der kantonalen Behörde vor Baubeginn zur Genehmigung eingereicht. Darin sind die vorgesehene Behandlung des Baustellenabwassers, die Einleitung des gereinigten Abwassers sowie die geplanten Wasserhaltungen aufzuzeigen.

Die Baustellenentwässerung der Zentralenbaugrube wird so konzipiert, dass eindringendes Flusswasser der Aare (z. Bsp. durch die Spundwände sickerndes Wasser) separat gefasst und über Pumpen direkt in den Vorfluter eingeleitet werden. Dieses geschlossene System ist unabhängig von der Baugrube und verunmöglicht einen direkten Kontakt von sauberem Flusswasser mit allgemeinem Bauwasser in den Baugruben.

Zufliessendes Grundwasser in der Sohle der Baugrube soll ebenfalls separat gefasst und ausserhalb der Baustelle ordnungsgemäss versickert werden. Dazu ist allenfalls in der Ausführungsphase auch die Erstellung eines oder mehrerer Versickerungsbrunnen zu prüfen und auszuführen.

Das restliche von den Bauarbeiten stammende Wasser in der Baugrube wird über Pumpen in eine Baustellenentwässerungsanlage gepumpt und dort mittels Schlammabsetzbecken, Ölabscheider und Neutralisationsanlage ordnungsgemäss gereinigt und bei Einhaltung der zulässigen Parameter in den Vorfluter eingeleitet. Betonabwasser ist über eine Neutralisationsanlage zu reinigen und in die öffentliche Kanalisation einzuleiten.

Abwasser von Toiletten und Waschplätzen der Baustelle wird in die öffentliche Kanalisation eingeleitet.

4 Auswirkungen Betriebsphase

4.1 Turbiniertes Wasser

Das turbinierte Wasser wird in keiner Weise verschmutzt oder anderweitig verändert. Das Flusswasser bleibt bei der Turbinierung durch die Turbinen der Zentrale qualitativ unverändert.

Das Wasser, welches durch die Hochwasser-/Schwallentlastungen und durch den Fischpass ins Unterwasser vom Kraftwerk gelangt wird ebenfalls qualitativ nicht verändert.

4.2 Wassergefährdete Flüssigkeiten

Im Kraftwerksareal kommen verschiedene wassergefährdende Flüssigkeiten sowohl in verschiedenen Geräten als auch in Lagerräumen vor. Wassergefährdende Flüssigkeiten sind zum Beispiel Hydrauliköl, Schmiermittel, Dieselöl, Batteriesäuren und Kältemittel.

Für die Kraftwerksanlage wurde eine Tabelle mit den vorgesehenen Stoffen und Mengen erstellt (Anhang 5). Zum Zeitpunkt der Projekteingabe können detaillierte und vertiefte Angaben und Mengen teilweise nur bedingt angegeben werden. Falls erforderlich, werden die fehlenden Angaben in der Ausführungsphase nachgeliefert.

 $06.04.2021 \ / \ UM, \ Bil \\ site \ 7 \ / \ 16 \\ site \ 33.701_technischer berichtbeilagen zum tb_auflage projekt 2021 \ 3.9_entwässerungskonzept.doz$

Zusätzlich wurde eine Gefahrenanalyse vorgenommen, in welcher verschiedene Gefahrenpotenziale erfasst und entsprechende Massnahmen zur Verhinderung eines Störfalls aufgelistet sind (Anhang 6).

In der Tabelle der Gefahrenanalyse (Anhang 6) sind die möglichen Gefahrenszenarien, ihre Ursachen sowie die entsprechenden Massnahmen zur Verhinderung des Störfalls und die Eintretenswahrscheinlichkeit zusammengestellt. Es wurden diejenigen Gefahrenszenarien gewählt, die unter Berücksichtigung der vorhandenen Gefahrenpotentiale jeweils zu den schlimmstmöglichen Schädigungen der Bevölkerung oder der Umwelt führen ("worst-cases"). Das System wurde in Teilsysteme unterteilt, wie Hauptzentrale, Stauwehr und Dotierkraftwerk. Pro Teilsystem wurden Anlageteile (z.B. Hydraulikaggregate, Batterien etc.) definiert, bei welchen die Störfälle auftreten können.

Für jedes Gefahrenszenarium wurden Massnahmen zur Herabsetzung des Gefahrenpotentials definiert. Ziel dieser vorsorglichen Massnahmen ist das Verhindern einer Gefahrensituation. Beim Versagen der vorsorglichen Massnahmen, treten Störfälle auf, welche ebenfalls für jedes Gefahrenszenarium aufgelistet sind. Massnahmen zur Verhinderung der Störfälle wurden definiert und in der Tabelle angegeben. Beim Versagen der Massnahmen zur Verhinderung von Störfällen können Einwirkungen auf die Umwelt und die Bevölkerung entstehen, welche soweit als möglich zu begrenzen sind. Um die Einwirkungen begrenzen zu können, wurden Massnahmen entwickelt, die wenn immer möglich, als so genannte passive Sicherheitsmassnahmen dienen (z.B. Auffangwannen, sichere Aufstellung der Geräte, Schaffung von vom Wasser abgeschotteten Bereichen). Sollten trotz aller Massnahmen Einwirkungen auf die Umwelt und die Bevölkerung entstehen, wurde pro Gefahrenszenarium die Eintretenswahrscheinlichkeit eingeschätzt. IM Allgemein ist die Eintretenswahrscheinlichkeit gering, weil die Wahrscheinlichkeit eines Versagens sämtlicher Massnahmen sehr gering ist und sich die Szenarien sich auf die schlimmstmöglichen Schädigungen beziehen.

Grundsätzlich sind überall passive Sicherheitsmassnahmen (z.B. Auffangwannen, usw.) und wo immer möglich redundante Sicherheitssysteme vorgesehen.

4.3 Drainagewasser

(Anhang 3)

Das **Leckagewasser** ist Flusswasser, welches durch undichte Dichtungslippen der elektromechanischen Ausrüstungen (Rohrturbinen) in den Innenraum der Zentrale gelangt. Das Leckagewasser kann ölverschmutzt sein und muss vor der Einleitung in den Vorfluter oder in die Kanalisation gesetzeskonform behandelt werden. Die Leckwassermenge bleibt bei normalen Betriebsbedingungen relativ gering. Bei beschädigten oder abgenutzten Dichtungslippen kann die Leckwassermenge stark zunehmen. Für die drei Maschinengruppen wird eine maximale Leckagewassermenge von 2 bis 3 l/s angenommen.

Das **Sickerwasser** ist Fluss- und Grundwasser, welches durch die Betonstruktur des Gebäudes in die Innenräume dringt. Sickerwasser ist ebenfalls das Meteorwasser, welches durch undichte Stellen in der Gebäudehülle in das Kraftwerk gelangt. Eine Betonkonstruktion ist natürlicherweise gerissen, obwohl die Betonmatrix wasserdicht ist. Die Risse können entweder durchgehend oder oberflächlich sein. Bei durchgehenden und genügend breiten Rissen in der Betonkonstruktion kann Wasser in die Innenräume der Zentrale eindringen. Für die Dichtigkeit der Betonkonstruktion sind verschiedenen Parameter massgebend wie der Armierungsgehalt, die Betonqualität und vor allem dessen Nachbehandlung, die Grösse und Länge der Betonieretappen, die Reihenfolge der Etappen, die klimatische Verhältnisse beim Betonieren, der Wasserdruck, usw.. Eine absolut wasserdichte Betonkonstruktion im Grundwasser ist praktisch nicht realisierbar. Deshalb ist mit Sickerwasser zu rechnen, wobei sich die genaue Sickerwassermenge von den obigen Parametern abhängt. Bei der neuen Zentrale Aarau wird mit einer kleinen Sickerwassermenge von rund 0.1 – 0.2 l/s gerechnet. Da das Sickerwasser überall in der Zentralenkonstruktion auftreten kann, ist es als ölverschmutztes Wasser zu behandeln.

Sperrwasser wird zur Verhinderung vom Eindringen von schwebstoffhaltigem Flusswasser in die Maschine verwendet. Das Sperrwasser (normlerweise Trinkwasser) wird in die Wellendichtung gepumpt, um einen Überdruck gegenüber dem Flusswasser zu erzeugen. Das Was-

IG KW Agrau

ser gelangt dank dem leichten Überdruck in das Flusswasser, kann aber auch in einer geringen Menge in die Maschine gelangen. Das Sperrwasser ist wie das Sicker- und das Leckagewasser als verschmutztes Wasser zu behandeln.

Drainagewasser wird auf jeder Ebene zuerst in Wasserrinnen (Rigolen) und dann in Schächten gesammelt. Das Wasser wird über Sammelleitungen in den Drainageschacht geführt. Das Wasser aus dem Turbinenschachtboden wird direkt über Rinnen in den Drainageschacht geführt. Der Drainageschacht ist mit einem ersten Ölabscheider ausgerüstet. Anschliessend wird das Wasser mit Drainagepumpen in einen vorfabrizierten und zertifizierten kombinierten Schacht mit Ölabscheider und Koaleszenz Filter gepumpt und von dort in die Aare geleitet. Dieser Schacht befindet sich im Bereich des nördlich der Zentrale gelegenen Werkhofs über dem maximalen Hochwasserspiegel der Aare.

Gemäss GSchG darf die Konzentration von Kohlenwasserstoffen in das abzuleitende Wasser, welches in ein Gewässer eingeleitet wird, 10 mg/l nicht überschreiten. Die Einhaltung dieser Bedingung kann mit dem Einsatz von einem Koaleszenz Filter realisiert werden.

4.4 Entleerungswasser

Das Entleerungswasser der Turbineneinläufe und der unterwasserseitigen Saugrohre im Revisionsfall wird vom allgemeinen Drainagewasser der Zentrale getrennt und in separaten Leitungen zu einem zentralen Sammelschacht geführt. Die Leitungen werden mit Absperrschiebern abgesperrt, in separaten Schächten pro Maschine gesammelt und dem zentralen Sammelschacht zugeführt. Ab dem Sammelschacht wird das Entleerungswasser im Revisionsfall mit zwei grossen Drainagepumpen (ca. 40 l/s) ins Unterwasser der Zentrale gefördert.

4.5 Häusliche Abwasser

In der Werkstatt und in der Zentrale fällt häusliches Abwasser und Waschwasser im Bereich des Werkhofs an. Das Abwasser wird wie bereits im heutigen Zustand an die öffentliche Kanalisation angeschlossen. Das Abwasser wird in einem zentralen Pumpenschacht im Bereich des Werkhofs gesammelt und von dort in die öffentliche Kanalisation gepumpt.

Das anfallende Abwasser aus dem Pavillon auf der Insel zwischen Kraftwerk und Altlauf der Aare wird wie heute in die Kanalisation eingeleitet.

Im bestehenden Betriebsgebäude bei der Wehranlage Schönenwerd und auf dem Spielplatz beim Inseli werden öffentliche WC-Anlagen mit Kaltwasser-Duschen eingerichtet. Dieses Schmutzwasser wird in die bestehenden Abwasserleitungen der öffentlichen Kanalisation eingeleitet.

4.6 Meteorwasser

(Anhang 4)

Das auf dem Deckel des Kraftwerkes sowie auf der OW-Brücke und dem Fussgängersteg anfallende Meteorwasser wird direkt in die Aare eingeleitet. Auch das Meteorwasser aus dem fahrbaren Bereich der Rechenreinigungsmaschine wird in die Aare geleitet.

Das Meteorwasser vom versiegelten Vorplatz und der Zufahrtsrampe zum Werkhof wird in einem Schlammsammler mit Ölabscheider zentral gefasst und von dort mittels einer separaten Abwasserpumpe in die öffentliche Kanalisation gepumpt. Die übrigen Strassenabschnitte werden wie heute über die bestehende Strassenentwässerung in die Kanalisation entwässert. Die Einleitung in die Kanalisation erfolgt mittels Kontrollschächten (Strassenabläufe) und Leitungen.

Ein Teil des Meteorwassers des überdeckten Werkhofs sowie der Parkplätze nördlich der Zentrale wird über die humusierte Böschungsfläche versickert.

Sämtliche bestehenden und neuen Leitungsabschnitte, die an die Kanalisation angeschlossen werden, werden auf ihre Dichtigkeit gemäss den Anforderungen des Kantons Aargau geprüft. Die Leitungen werden vorgängig mit dem Kanalfernsehen kontrolliert.

IG KW Agrau

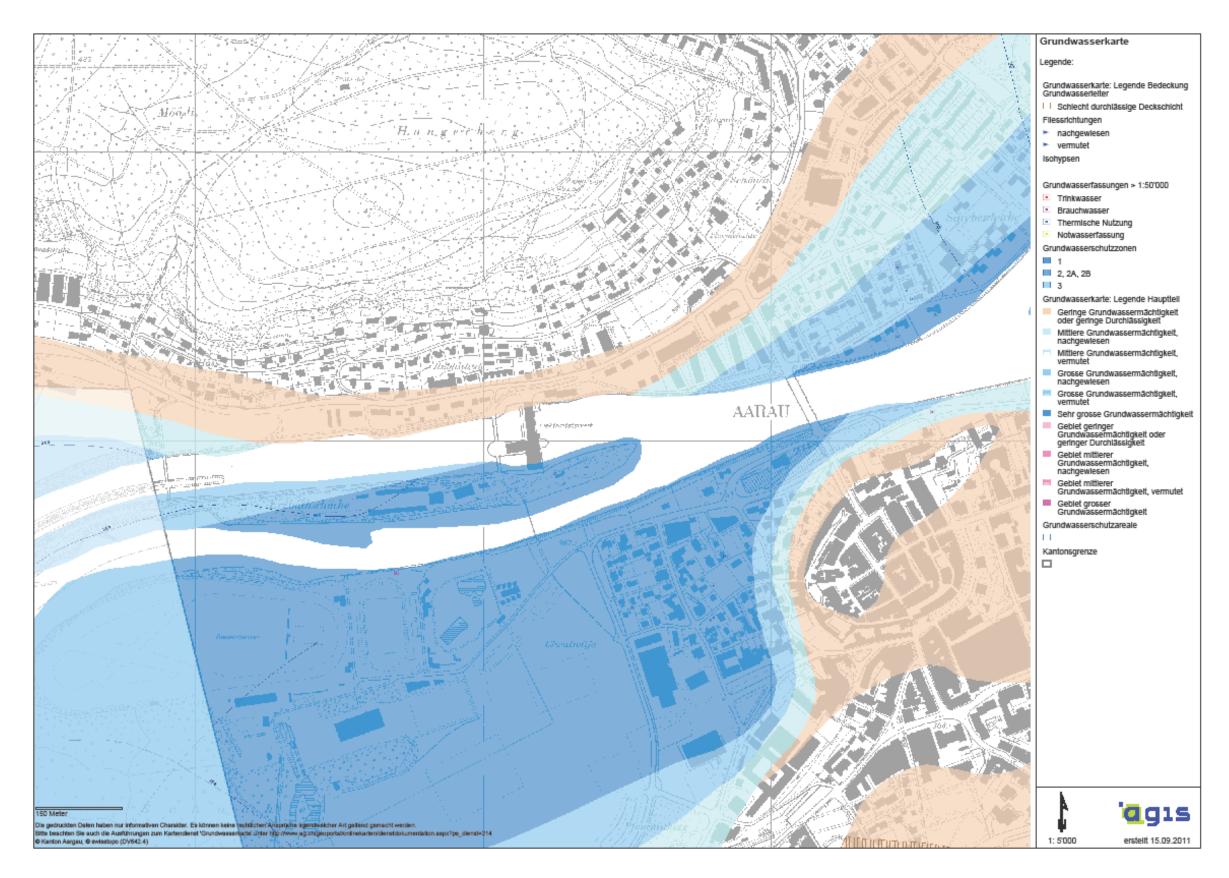
5 Schlussfolgerungen

Bei den Bauvorgängen bestehen gewisse Risiken mit dem unsachgemässen Umgang mit Baustellenabwasser, wobei die Baustellenentwässerung nach SIA/VSA 431 erfolgen wird.

Für wassergefährdete Flüssigkeiten oder gefährliche Stoffe innerhalb der Zentrale (z. Bsp. Öle oder Schmiermittel, Fette, etc.) sind die notwendigen Sicherheitssysteme vorgesehen. Pumpenschacht und Ölabscheider werden eingerichtet. Drainage- und Entleerungswasser werden in getrennten Pumpenschächten gesammelt und mittels Pumpen über die notwendigen Behandlungsanlagen (Schlammsammler und Ölabscheider mit Koaleszenzfilter) in die Aare abgeleitet. Häusliche Abwasser und Meteorwasser vom Werkhof und der Zufahrtsrampe werden vorschriftsgemäss in die Kanalisation eingeleitet.

Für die Realisierung werden folgende weitere Massnahmen vorgesehen:

- Erstellen von Baustellenentwässerungskonzepten nach SIA/VSA 431 durch die Unternehmer. Einreichung der Entwässerungskonzepte bei den zuständigen Behörden vor Baubeginn.
- Prüfung der Dichtigkeit von bestehenden und neuen Schmutzwasserleitungen inkl. der vorgängigen Kontrolle mit Kanalfernsehen.
- Die drehenden Teile der Maschinen und anderen Komponenten, welche mit Flusswasser in Berührung kommen, werden fettfrei gelagert oder wassergeschmiert, z. Bsp. selbstschmierende, unterhaltsfreie Lager der Leitschaufeln und wassergeschmierte Wellenlager. Diese Massnahmen sind heute Stand der Technik.
- Verwendung von biologisch abbaubaren Hydraulikölen bei den Hydraulikantrieben der Stahlwasserbauten.
- Um zu verhindern, dass bei Normalbetrieb oder bei einem Störfall wassergefährdete Flüssigkeiten (Schmieröl, Hydrauliköl, etc.) ins Abwasser oder ins Flusswasser gelangen können, sind separate Drainage- (kleine Drainagepumpen mit Ableitung über Ölabscheider mit Koaleszenz Filter) und eigene Entleerungssysteme für die Turbinen und deren Saugrohre (zwei grosse Entleerungspumpen) vorgesehen.
- Platzwasser wird möglichst oberflächlich abgeleitet und über humusierte Mulden oder ein Filterbecken versickert. Wenn dies nicht möglich ist, wird es in die öffentliche Kanalisation eingeleitet.

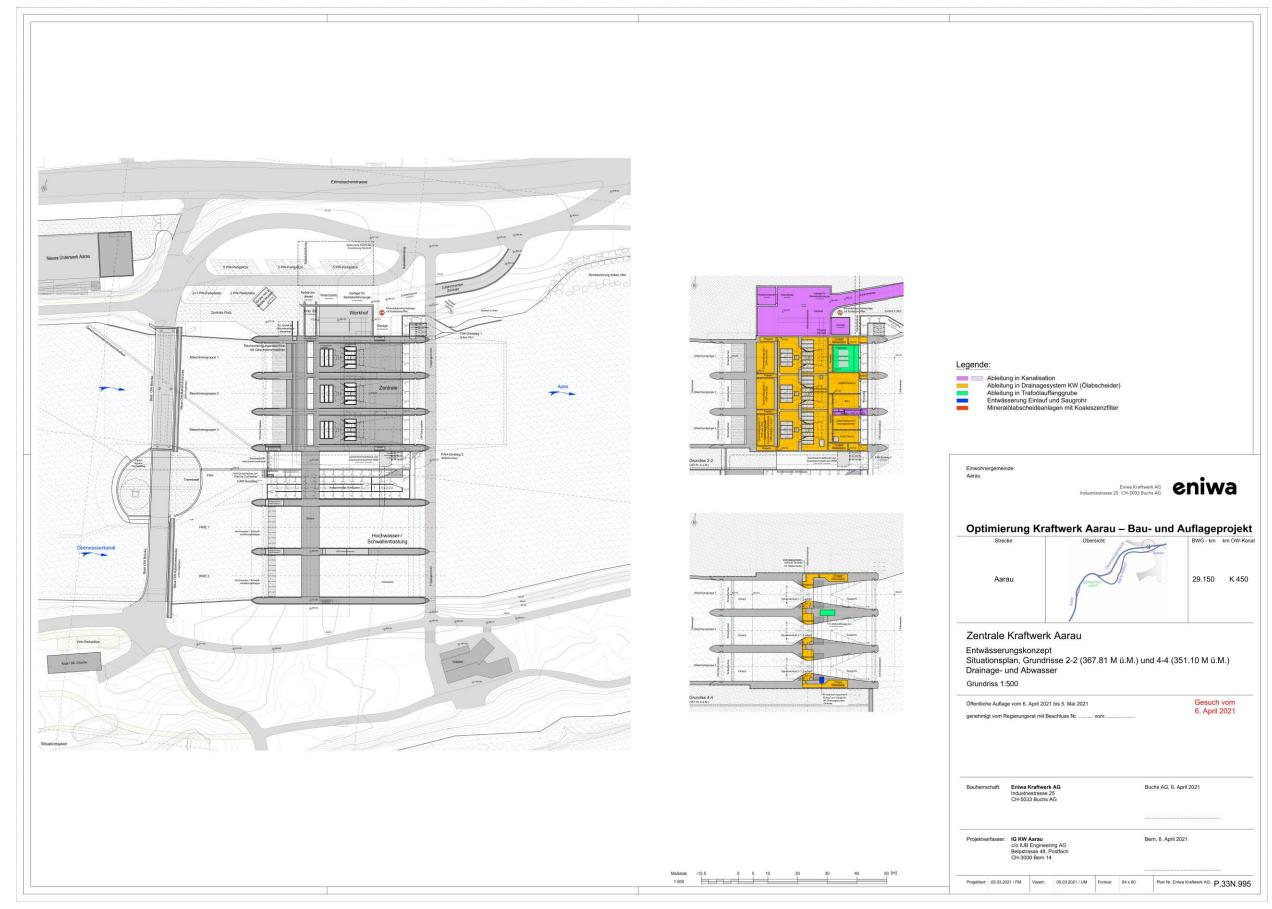

Ingenieurgemeinschaft KW Aarau

IUB Engineering AG, Bern / IM Maggia Engineering AG, Locarno

Bern, Locarno, 06. April 2021 / UM, MF

Anhang 1: Grundwasserkarte

Anhang 2: Gewässerschutzkarte



Anhang 3: Konzept Ableitung Meteorwasser

Anhang 4: Konzept Ableitung Drainagewasser und Abwasser

Anhang 5: Stoffe und Mengen nach StFV

Standort	Stoff	Lagerart	In Ausnahmeliste	In Liste mit Stoffen und Zubereitungen	Giftigkeit	Brand-/Explosionseigenschaften	Ökotoxizität	MS (kg) Mengenschwelle	Menge IBA	Menge in kg	MS überschritten
	Schmier- und Hydrauliköl	Maschinen, Tanks	NEIN	NEIN	Xn	Flammpunkt >55°	EC50>10mg/l; LC50>10 mg/l	20'000	15'000 l	13'050	NEIN
	Isolieröl	Transformatoren, Tanks	NEIN	JA	Xi	Flammpunkt >55°	EC50>10mg/l; LC50>10 mg/l	200'000	100'000 l	87'000	NEIN
Hauptzentrale	Diesel für NSD im Z1 UG2	Notstromdiesel, Tanks	JA					500'000	2'000	1'480	NEIN
	Batteriesäure (1.24 kg/l)	Batterien	NEIN	JA				2'000	1'700 kg	1'700	NEIN
	Ethylene Glycol	Kühlanlage	NEIN	JA	Xn	Flammpunkt >55°		20'000	10 kg	10	NEIN
	Hydrauliköl für Stauwehrhydraulik		NEIN	NEIN	Xn	Flammpunkt >55°	EC50>10mg/l; LC50>10 mg/l	20'000	517 l	450	NEIN
	Isolieröl EB Trafo		NEIN	JA	Xi	Flammpunkt >55°	EC50>10mg/l; LC50>10 mg/l	200'000	506 l	440	NEIN
Stauwehr	Diesel für NSD		JA			·		500'000	378	280	NEIN
	Batteriesäure (1.24 kg/l)		NEIN	JA				2'000	250 kg	250	NEIN
	Ethylene Glycol		NEIN	JA	Xn	Flammpunkt >55°		20'000	kg	4	NEIN

Ausnahmeliste:

Tabelle mit Mengenschwellen für Stoffe oder Zubereitungen im Anhang 1 der StFV

Liste mit Stoffen und Zubereitungen:

Publikation des BAFU mit Mengenschwellen für Stoffe und Zubereitungen, die anhand der Kriterien Giftigkeit, Brand- und Explosionseigenschaften sowie Oekotoxizität gemäss Anhang 1 der StFV ermittelt wurden

Giftigkeit:

T +	sehr giftig
T	Giftig
С	Ätzend
Xn	Gesundheitsschädlich
Xi	Reizend

Oekotoxizität:

EC50 Mittelere effektive Konzentration der Schwimmunfähigkeit für 50% der Daphnien

LC50 Mittlere letale Konzentration

MS: Mengenschwelle in kg
Menge IBA: Max. lagerbare Menge KWA
Menge in kg: Max. lagerbare Menge KWA in kg

Brand- und Explosionseigenschaften:

E1	hochexplosibel
E2	explosibel (inklusive pyrotechnische Artikel)
AF	selbstentzündliche Stoffe
HF	Stoffe, die in Berührung mit Wasser brennbare Gase entwickeln
F1	leichtentzündlich und äusserst rasch abbrennbar
F2	entzündlich und rasch abbrennbar
F3	leicht brennbar
F4	mittelbrennbar
01	sehr starke Oxidationsmittel
02	starke Oxidationsmittel
03	schwache Oxidationsmittel

Anhang 6: Gefahrenanalyse

Betrieb

Phase: System: Kraftwerk Aarau

eilsystem	Anlageteil	5	Situation / Gefahrenszenarien	Ursache	Massnahme zur Herabsetzung des Gefahrenpotenzials	Störfall	Massnahme zur Verhinderung der Störfälle	Einwirkung	Begrenzung der Einwirkungen	Eintretenswahrscheinlichkeit
Hauptzentrale	Hydraulikaggregate	1.1	Ölleckage	Undichtigkeit Hydraulik- oder Schmierölleitung oder Öltank	Bemessung Leitungen und Kostruktion für max. Betriebsdruck, Fachgerechte Montage, CE- Konformitätserklärung, Druck- und Niveauüberwachung	Ölausströmung	Druckmessung, Abschlussventile, Ölauffabgsysteme	Kontaminierung der Umgebung	Auffangwanne	gering
	Antriebe/Hydraulische Zylinder in Kontakt mit Flusswasser (aus Triebwassersystem)	1.2	Ölleckage	Undichtigkeit Dichtungen	Fachgerechte Kontruktion und Montage, Niveauüberwachung der Öltanks, sofern technisch machbar Einsatz biologischabbaubarer Öle	Ölausströmung in Triebwasser	Druckmessung, Abschlussventile,	Kontaminierung des Wassers	Einsatz von biologisch abbaubaren Öl, Ölauffangsysteme	gering
	Hydraulik- oder Schmierölleitungen	1.3	Ölleckage	Undichtigkeit Hydraulik- oder Schmierölleitung	Bernessung Leitungen für max. Betriebsdruck, Fachgerechte Montage, Druck- und Überwachungseinrichtungen, regelmässige Kontrollen und Unterhalt	Ölausströmung	Druckmessung, Abschlussventile, Ölauffangsysteme	Kontaminierung der Umgebung	Ölabscheider mit Koalesenzfilter für Wasser aus Bodenabläufe	gering
	Rotierende Bauteile im Kontakt mit Flusswasser (aus Triebwassersystem)	1.4	Ölleckage	Undichtigkeit Dichtungen	Fachgerechte Kontruktion und Montage	Ölausströmung in Triebwasser	Druckmessung, Abschlussventile	Kontaminierung des Wassers	Einsatz von biologisch abbaubaren Öl	gering
	Batterien	1.5	Leckage Säure	Undichtigkeit Batterie	Unterhaltskonzept (regelmässige Kontrollen und Ersatz)	Ausströmung von Säure		Personenverletzungen (Reizungen der Augen und der Haut) und Kontaminierung der Umgebung	Auffangwanne, Instruktion des Personals, Warnungstafeln, regelmässige Kontrollen und Unterhalt	gering
	Batterien	1.6	Laden der Batterien			Wasserstoffbildung	Laderegler (Verhinderung des Überladen)	Explosion	Be-/Entlüftungsanlage	gering
		200000	Dieselleckage	Undichtigkeit Dieseltank	Kontrollen, Ersatz	Dieselausströmung	Ölauffangsysteme	Brandgefahr, Kontaminierung der Umgebung	Auffangwanne, Löschanlage	gering

