

Amt für Umwelt

Hochwasserschutz •

Hochwasserschutz und Revitalisierung Emme Wehr Biberist bis Aare

Sanierungsprojekt inkl. Entsorgungskonzept Kehrichtdeponie Rüti, Zuchwil

Bauprojekt

Beilage 1.09 / 12.119.1.08

8. August 2014

Änderungsnachweis

Version	Datum	Bezeichnung der Änderungen	Verteiler
1	16.05.2014	1. Entwurf Bauprojekt	GPL, fachl. BHU
2	08.08.2014	Definitive Fassung Bauprojekt	GPL, kantonale Fachstellen, BAFU, betroffene Gemeinden, digitale Fassung Homepage AfU
3			
4			

Genehmigt / geprüft GPL, 30.05.2014

Adresse Auftraggeber Adresse Auftragnehmer

Amt für Umwelt des Kantons Solothurn INGE M^E

Werkhofstrasse 5 c/o IC Infraconsult AG

4509 Solothurn Eigerstrasse 60

3006 Bern

Kontaktperson: Roger Dürrenmatt Kontaktperson: Nicole Schiltknecht

Telefon: +41 (0)32 627 27 67 Telefon: +41 (0)31 359 24 22

Fax: +41 (0)32 627 76 93 Fax:

Mail: roger.duerrenmatt@bd.so.ch Mail: nicole.schiltknecht@infraconsult.ch

Inhaltsverzeichnis

1	EINLEITUNG	4
1.1	AUSGANGSLAGE	4
1.2	Bauprojekt Hochwasserschutz	5
1.3	Standortbeschreibung	5
1.4	GESCHICHTE	5
1.5	AUSGEFÜHRTE ARBEITEN	6
1.6	Verwendete Unterlagen	6
2	Entsorgungsuntersuchung	8
2.1	Konzept	8
2.2	BAGGERSONDIERUNGEN	8
2.3	Untersuchungen Baggerschlitzproben	g
2.4	MATERIALSORTIERUNG	9
3	BELASTUNGSSITUATION	10
3.1	Untergrundverhältnisse/Geologie	10
3.2	Oberboden	10
3.3	Deckschicht	10
3.4	Deponiematerial	11
3.5	GEWACHSENES TERRAIN	14
3.6	PORENLUFT	15
4	ENTSORGUNGSKONZEPT	16
4.1	Belastungs-/Schichtmodell	16
4.2	Entsorgungskategorien	16
4.3	MENGEN UND ENTSORGUNGSWEGE	18
4.4	RAHMENBEDINGUNGEN FÜR (VOR-ORT)-BEHANDLUNG	20

5	VORGEHEN21	
5.1	RAHMENBEDINGUNGEN21	
5.2	SANIERUNGSABLAUF UND -DAUER	
5.3	INSTALLATION UND SCHUTZMASSNAHMEN23	
5.4	AUSHUB UND TRIAGE	
5.5	Vor-Ort-Aufbereitungsanlage	
5.6	Konzept Erfolgskontrolle	
5.7	ÜBERWACHUNG DER SANIERUNG	
5.8	STÖRFALLVORSORGE UND ARBEITSSICHERHEIT27	
5.9	Organisation und Reporting	
5.10	D AUSWIRKUNGEN AUF DIE UMWELT	
6	HAFTUNGSBESCHRÄNKUNG29	
TAE	BELLENVERZEICHNIS	
ABBILDUNGSVERZEICHNIS		

Anhang

Anhang 1 Lage Probenahmestellen

Anhang 2 Belastungspläne

Anhang 3 Analysenergebnisse und Abfallkategorien

Anhang 4 Entsorgungskategorien und -mengen

Anhang 5 Fotodokumentation

Anhang 6 Analysenberichte

Anhang 7 Pläne Sanierung

1 Einleitung

1.1 Ausgangslage

Anlass

Das Projekt "Hochwasserschutz und Revitalisierung Emme Wehr Biberist bis Aare" (HWS Emme) tangiert die ehemalige Kehrichtdeponie Rüti in Zuchwil. Die Deponie ist als sanierungsbedürftiger Ablagerungsstandort im Kataster der belasteten Standorte (KbS) des Kantons Solothurn eingetragen. Der Sanierungsbedarf wird durch mögliche schädliche Einwirkungen auf das Schutzgut Grundwasser und auf das Oberflächengewässer begründet.

Ziel

Die Deponie Rüti soll im Rahmen des Hochwasserschutzprojekts untere Emme totaldekontaminiert werden und an ihrer Stelle eine Flutmulde bzw. Flussaufweitungen entstehen [6].

Abgrenzung

Das vorliegende Sanierungsprojekt geht von der im Wasserbauprojekt vorgesehenen Totaldekontamination durch Aushub aus. Im Hinblick auf die Kostenverteilung (VASA-Beiträge) wird in einem separaten Bericht die Sanierungsbedürftigkeit, die Belastungssituation und die Sanierung auf Stufe Detailuntersuchung beurteilt sowie die optimale Sanierungsvariante ermittelt.

Inhalt Bericht

Das vorliegende Sanierungsprojekt (Bauprojekt) dokumentiert die Belastungssituation inkl. der durchgeführten Entsorgungsuntersuchung und beschreibt die vorgesehenen Sanierungs- und Entsorgungsmassnahmen. Der Bericht ist Teil des wasserbaulichen Bau- und Auflageprojekts.

Objektdaten

Auftraggeber	Abteilung Wasserbau, Amt für Umwelt Kt. SO	
Objektbezeichnung	Kehrichtdeponie Rüti	
Gemeinde	Zuchwil	
Standortnummer KbS	22.064.0001A	
Parzelle KatNr.	263	
Mittlere Koordinaten	610 490 / 227 875	
Fläche	ca. 10'000 m ²	
Mittlere Kote	ca. 435 müM	
Gewässerschutzbereich	$A_{\scriptscriptstyle U}$	

1.2 Bauprojekt Hochwasserschutz

Übersicht

Als Teil der Aufweitungsmassnahmen im Hochwasserschutzprojekt ist im Bereich der Deponie Rüti die "Überflutungsfläche Rüti" geplant (Teil der Massnahme Nr. 20 [6]). Dabei wird das Gelände ca. 4 m abgesenkt. Die neue Böschung liegt ca. 20 m vom bestehenden Emmeweg entfernt. Entlang des Emmewegs sind zusätzlich Schutzdämme geplant.

Zeitplan

Der Terminplan sieht wie folgt aus:

•	Erarbeitung Bauprojekt	bis Mai 2014
•	Erarbeitung Auflageprojekt	bis April 2015
•	Vergabe Bauarbeiten	Ende 2015

Ausführung Deponiesanierungen
 Ausführung Wasserbau
 Ausführung Wasserbau
 Ausführung Wasserbau

1.3 Standortbeschreibung

Lage

Die ehemalige Kehrichtdeponie Rüti liegt nordöstlich eines Gewerbe- und Wohngebietes in einem bewaldeten Bereich zwischen dem Emmenweg und der Emme. Am Nordrand und entlang der Emme ist die Deponie klar als Stufe im Gelände sichtbar, entlang des Emmeweges und der südöstlichen Grenze nicht.

Perimeter

Der Perimeter ist bzgl. Lage und Ausdehnung gut bekannt (vgl. Situation in Anhang 1 und 7). Insbesondere kann davon ausgegangen werden, dass im Bereich des Emmenwegs, auf dem Grundstück Kat-Nr. 1254 und im Bereich des bestehenden Emmeufers keine Abfälle abgelagert wurden.

1.4 Geschichte

Übersicht

Im Bereich der ehem. Kehrichtdeponie Rüti wurde ab den 1930er-Jahren Kies abgebaut. Die Ablagerung von Kehrichtmaterial erfolgte ab Ende der 1950er Jahre bis ca. 1970 [1].

Herkunft Abfälle

Einerseits wurde der Kehricht der Einwohnergemeinde Zuchwil in der Deponie abgelagert. Andererseits konnten die Einwohner von Zuchwil auch direkt Abfälle zur Deponie bringen. Es besteht der Verdacht, dass neben dem Haushaltkehricht der Gemeinde Zuchwil auch Abfälle von Gewerbebetrieben (Betriebskehricht) abgelagert wurden [1].

1.5 Ausgeführte Arbeiten

FRIEDLIPARTNER AG:

- Auswertung der bestehenden Grundlagen
- Organisation und Begleitung von zusätzlichen Sondierungen (8 Baggerschlitze)
- Entnahme von Feststoffproben aus den Baggerschlitzen
- Geologische und entsorgungstechnische Aufnahme der Baggerschlitzprofile bzw. des ausgehobenen Materials
- Messung der Radioaktivität an den Baggerschlitzen bzw. am ausgehobenen Material und an den Probenahmegefässen (ausgeführt durch Bundesamt für Gesundheit, Verbraucherschutz, Reto Linder)
- Erteilen Analysenaufträge
- Durchführung von Materialsortierungen an Deponiematerial (7 Proben) in Zusammenarbeit mit SGS Institut Fresenius, Kölliken
- Auswertung und Dokumentation der Ergebnisse der Entsorgungsuntersuchung
- Klassierung des anfallenden Aushubmaterials, Festlegen von Entsorgungskategorien und –wegen
- Planung der Sanierung (Vorgehen Aushub und Entsorgung)
- Verfassen des vorliegenden Berichts

Galli Hoch- und Tiefbau AG, Zuchwil:

 Ausheben von 8 Baggerschlitzen bis auf eine Tiefe 4-5 m ab OK Terrain, ausgeführt vom 20. bis 22. November 2013.

SGS Institut Fresenius, Betriebsstätte Kölliken:

- Untersuchen von 25 Feststoffproben (TVA-Analysen, Wassergehalte, TVA-Eluate) inkl. Probenvorbereitung
- 13 Körnungsanalysen (Siebkurven) von Deponiematerial
- Mithilfe bei der Materialsortierung

1.6 Verwendete Unterlagen

- [1] Historische Untersuchung mit Pflichtenheft für die technische Untersuchung. Ehemalige Kehrichtdeponie Rüti, Zuchwil. Bericht, SolGeo AG vom 16. Juni 2011 (rev. 6. Juli 2011).
- [2] Technische Untersuchung. Ehemalige Kehrichtdeponie Rüti, Zuchwil. Bericht, SolGeo AG vom 17. Oktober 2011.
- [3] Geotechnische Detailabklärungen zu Baugrund, Zustand bestehende Dämme, Standorteignung neue Dämme, Hochwasserschutz und Revitalisierung Emme, Wehr Biberist bis Aare, Vorstudie, Bericht Nr. 1510 422.3 der GEOTEST AG vom 24. November 2011.

- [4] Synthesebericht, Untersuchungen belastete Standorte, Hochwasserschutzund Revitalisierungsprojekt Emme, Abschnitt Wehr Biberist bis Aare, Bericht der Solgeo AG vom 08.11.2011.
- [5] Untersuchung Schadstoffbelastung Boden (VSB und Deponien), Hochwasserschutz und Revitalisierung Emme Biberist – Luterbach, Kurzbericht der FRIEDLIPARTNER AG vom 18.03.2013.
- [6] Raumplanungsbericht & Technischer Bericht, Hochwasserschutz und Revitalisierung Emme, Wehr Biberist bis Aare, Vorprojekt, Bericht der ARGE Emme Auen vom 24. April 2013.
- [7] Resultate der Eluattests nach Altlasten-Verordnung. HWS Emme, Zusatzuntersuchungen Kehrichtdeponie Rüti, Zuchwil. Kurzbericht FRIEDLIPARTNER AG, 27. Februar 2014.
- [8] Rundschreiben BAFU. VASA-Abgeltungen bei Massnahmen im Zusammenhang mit Projekten zum Hochwasserschutz und Gewässerrevitalisierungen. BAFU, Abteilung Boden und Biotechnologie, 21. März 2014.

2 Entsorgungsuntersuchung

Nachfolgend sind die im Rahmen der Zusatzuntersuchungen ausgeführten Arbeiten detailliert aufgeführt. Die Ergebnisse folgen in Kapitel 3.

2.1 Konzept

Bisherige Untersuchungen

Im Rahmen der ersten technischen Untersuchung im Jahre 2011 [2] wurden bereits Proben aus zehn Baggerschlitzen und das Grundwasser untersucht.

Ziel

Im Hinblick auf die weiteren Planungsarbeiten (Bau- und Auflageprojekt) und die Submission der Tiefbauarbeiten sollten frühzeitig zusätzliche Informationen über die im Projektperimeter vorliegenden Belastungen erhoben werden. Der Fokus lag dabei auf entsorgungstechnischen Parametern, d.h. neben den Schadstoffgehalten sollten insbesondere auch Angaben zu Körnung, Wassergehalt, Dichte und genaue Zusammensetzung des Fremdstoffanteils erhoben werden.

Mit der Verdichtung des bestehenden Probenahmerasters sollten mehr Informationen zu den Schichtmächtigkeiten und insbesondere der Untergrenze der Ablagerungen gewonnen werden.

2.2 Baggersondierungen

Sondierungen

Im Deponieperimeter wurden zusätzlich 8 Baggerschlitze à 3-5.5 m Tiefe ausgehoben (BS13-12 bis BS13-19, Lage vgl. Anhang 1). Die Sondierstandorte wurden so gewählt, dass Lücken im bestehenden Raster geschlossen und eine möglichst gute räumliche Verteilung erreicht werden konnten. In drei Schlitzen wurde der anstehende Schotter nicht erreicht.

Organoleptische Beurteilung

Alle Schichten wurden geologisch und entsorgungstechnisch beschrieben und folgende Informationen im Feld erhoben:

- Körnung der Matrix (Feinkornanteil, Anteil Kies und Steine)
- Anteil und Art der Fremdstoffe
- Abschätzung der Rohdichte

Probenahme

Mit Ausnahme des Oberbodens (bereits beprobt, vgl. Kapitel 3) und organoleptisch unauffälligen Schichten des gewachsenen Untergrundes wurde aus allen unterscheidbaren Schichten (ab o.3 m Mächtigkeit) Proben entnommen (rund 30). Proben aus dem anstehenden Schotter konnten nur wenige entnommen werden (3), da die Deponiesohle teilweise nicht erreicht wurde bzw. aufgrund der grossen Schlitztiefe eine Vermischung mit überliegendem Material passierte.

2.3 Untersuchungen Baggerschlitzproben

Chemische Analysen

- 21 Proben wurden gemäss BAFU-Vollzugshilfe *Analysenmethoden im Altlasten- und Abfallbereich* (Stand 2010) auf folgende Parameter untersucht:
 - Aliphatische Kohlenwasserstoffe C₁₀-C₄₀ (Kohlenwasserstoff-Index, KWI)
 - Polycyclische aromatische Kohlenwasserstoffe (PAK)
 - Schwermetalle (As, Sb, Pb, Cd, Cu, Ni, Hg, Zn)
 - Gesamter organisch gebundener Kohlenstoff (TOC)
 - Polychlorierte Biphenyle (PCB), 16 Analysen

Die Auswahl der analysierten Proben richtete sich nach den organoleptischen Befunden. Pro Baggerschlitz wurde mindestens eine Probe des Deponiematerials analysiert. Dazu zwei Proben aus der Deckschicht und drei aus dem anstehenden Schotter.

Bei drei Proben mit stark erhöhtem TOC-Gehalt wurde der elementare Kohlenstoff (EC nach VGB-Blatt 4.4.2.1) bestimmt (Proben BS 13-15/4, BS13-17/4 und BS13-19/4).

An zwei Proben mit stark erhöhten Schwermetallgehalten wurden schliesslich TVA-Eluate (Test 1) für die Schwermetalle Pb, Cd, Hg und Zn ausgeführt.

Physikalische Analysen

Bei allen Proben wurde der Wassergehalt (nach DIN 18121) bestimmt, bei 13 Deponiematerialproben zusätzlich die Kornverteilungskurve ermittelt (nach DIN 18123).

2.4 Materialsortierung

Proben

An sieben Deponiematerialproben (BS13-12/3, BS13-14/3, BS13-15/4, BS13-16/3, BS13-17/4, BS13-18/4 und BS13-19/4) wurden im Labor (SGS Institut Fresenius, Kölliken) eine Materialsortierung vorgenommen. Die Probenmenge betrug jeweils 20 Liter, d.h. ca. 20-30 kg.

Vorgehen

Nach der Trocknung wurde mittels Siebung die Fraktion < 1 cm (= "Feingut") abgetrennt. Die Restfraktion ("Grobfraktion") wurde anschliessend manuell aussortiert.

Neben dem natürlichen mineralischen Anteil (Steine und Kies) wurden die Fremdstoffe nach verschiedenen Gruppen (Papier/Pappe, Holz, Gewebe/Textilien, Plastik, mineralische Bauabfälle, Glas, Keramik/Steingut, Batterien, Metalle, Belag, Spezielles wie Medikamente, Farbengebinde und Restanteil) aufgetrennt und jeweils das Gewicht erfasst.

Chemische Analysen

Bei vier der aussortierten Proben wurde die abgetrennt Feinfraktion < 1 cm chemisch untersucht. Die Analysenparameter waren TOC, KWI, PAK, Schwermetalle und PCB.

3 Belastungssituation

Dokumentation

Basierend auf der durchgeführten Entsorgungsuntersuchung bzw. den bestehenden Untersuchungen wird nachfolgend die Belastungssituation beschrieben.

Eine Übersicht zu den vorhandenen Abfallkategorien (pro Sondierung bzw. pro Schicht) findet sich in der Tabelle in Anhang 3.1 bzw. in den Belastungsplänen in Anhang 2. Die Beschreibung aller bisher ausgeführten Sondierungen ist tabellarisch ebenfalls in Anhang 3.1 aufgeführt. Die Analysenberichte finden sich in Anhang 6 (nur Ergebnisse der Analysen der Entsorgungsuntersuchung).

3.1 Untergrundverhältnisse/Geologie

Untergrund

Der Projektperimeter liegt im Bereich des Emmeschotters, der von geringmächtigen fein- bis mittelkörnigen Überschwemmungssedimenten überlagert ist.

Genereller Schichtaufbau

Im Deponieperimeter ist der folgende generelle Schichtaufbau (inkl. Mächtigkeit) vorhanden:

- Oberboden (Walderde): 0.2 m
- Deckschicht: 0-2 m
- Auffüllungen / Deponiematerial: 1-5.5 m
- Emmeschotter / lokal Überschwemmungssedimente

Koten

Die Oberfläche der Deponie liegt auf 434.5 bis 436 müM, die Untergrenze der Ablagerungen ist bei 429.5 bis 431.5 müM zu erwarten.

Grundwasser

Das Grundwasser im Emmeschotter weist ein sehr geringes Gefälle von ca. o.3 ‰ auf und fliesst in nördlicher bis nord-nordwestlicher Richtung [2]. Der Flurabstand beträgt ca. 9 m. Der höchste Grundwasserspiegel liegt bei ca. 429 müM, d.h. ca. 6 m unter Terrain [2].

3.2 Oberboden

Unbelastet bis schwach belastet

Der Oberboden wurde 2012 mittels dreier Flächenproben untersucht ([5], Lage der Probenahmestellen vgl. Anhang 2.1). Im nördlichen Teil (Proben HMB 12-10/2) ist unbelasteter Bodenaushub vorhanden. Der südliche Teil (HMB 12-10/1 und HMB 12-10/3) ist schwach mit PAK (1.5 mg/kg), Zink (181 mg/kg) und PCB (0.021 mg/kg) belastet. Es handelt sich um Waldboden mit einem entsprechend erhöhten organischen Anteil ("Walderde").

3.3 Deckschicht

Organoleptisch

Die Deckschicht ist mittel- bis feinkörnig (siltiger Sand mit wenig bis viel Kies) und weist teilweise einen geringen Fremdstoffanteil (1-5 % mineralische Bauabfälle,

lokal bis 10 %) auf. Die Mächtigkeit variiert stark und liegt zwischen o (Deponiematerial direkt unter Oberboden) bis 2 m (durchschnittlich o.6 m).

Schadstoffe

Insgesamt wurden vier Proben aus der Deckschicht untersucht (davon eine Unterbodenprobe aus dem nördlichen Deponieteil). Zwei Proben weisen keine Schadstoffgehalte über dem Grenzwert U auf. Eine Probe ist der Abfallkategorie tolerierbarer Aushubmaterial zuzuordnen, eine als Inertstoff zu klassieren.

Abfallkategorien

Beim grössten Teil der Deckschicht dürfte es sich um unverschmutztes bzw. tolerierbares Aushubmaterial handeln. Bei erhöhtem Fremdstoffanteil (> 5 Gew.-%) muss das Aushubmaterial aus der Deckschicht der Abfallkategorie "Inertstoff" zugeordnet werden. Die Abfallkategorien (soweit bekannt) und die Mächtigkeit der Deckschicht sind pro Baggerschlitz in Anhang 2.2 dokumentiert.

3.4 Deponiematerial

Kehrichtablagerungen

Das eigentlichen Deponiematerial ist meist stark bis sehr stark belastet (Abfallkategorien Reaktorstoff bzw. > Reaktor-/Reststoff). Es handelt sich mehrheitlich um Kehricht mit unterschiedlicher Zusammensetzung. Die Ablagerungen sind oft relativ locker gelagert, unterschiedlich stark verwittert und weisen praktisch durchwegs Brandspuren und hohe Ascheanteile auf. Die Mächtigkeit des Deponiematerials beträgt durchschnittlich ca. 4 m, lokal ist sie kleiner (bis 1 m) bzw. grösser (bis 5 m).

Überdeckung mit Inertstoff

Im Westteil der Deponie (ca. 2000 m², entlang Emmeweg, vgl. Anhang 2.3) ist der obere Teil der Ablagerungen (1-2 m) weniger stark belastet (bis maximal Inertstoff). Es handelt sich wahrscheinlich um eine Überdeckung mit (belastetem) Aushubmaterial im Rahmen des Deponieabschlusses.

Datengrundlage

Nachstehend werden die Eigenschaften des Deponiematerials zusammen mit den auftretenden Belastungen detailliert beschrieben. Grundlage sind die Ergebnisse der Technischen Altlastenuntersuchung von 2011 [2] und der aktuellen Entsorgungsuntersuchung, d.h. es sind Informationen von total 20 Baggerschlitzen und rund 30 Proben vorhanden.

Abfallkategorien

Ca. 50 % des Deponiematerials erfüllt die Anforderungen der TVA an Reaktorstoffe nicht und ist entsprechend als > Reaktor-/Reststoff zu klassieren. Die klassierungsrelevanten Schadstoffe bzw. Belastung sind dabei der erhöhte organische Fremdstoffanteil (> 15 Gew.-% Holz, Papier, Plastik, Asche, etc.), TOC, KW, PCB sowie in Einzelfällen die Schwermetalle As, Cd und Hg.

Ca. 40 % des Deponiematerials ist als Reaktorstoff zu klassieren mit den klassierungsrelevanten Parametern TOC, KW und vereinzelt Cu, Zn und PAK.

Ca. 10 % des Materials dürfte die Anforderungen an Inertstoff erfüllen.

In der Situation in Anhang 2.3 ist sind die Abfallkategorien inkl. den klassierungsrelevanten Parametern pro Baggerschlitz dargestellt.

- 12 -

Fremdstoffe

Die folgenden Angaben zur Art und Menge der Fremdstoffe basieren auf den Feldaufnahmen (Schätzungen) und den Ergebnissen der Materialsortierungen (vgl. Anhang 3.2).

Fremdstoffanteil

Der Fremdstoffanteil beträgt 10-100 Gew.-% (durchschnittlich 40-60 Gew.-%). Die Fremdstoffbestandteile treten in allen Grössen auf (Gegenstände wie grosse Metallstücke von 1-2 m bis feinkörnige Asche und Brandschutt) und sind in der Regel gut mit der Matrix vermischt.

Art der Fremdstoffe

Die Art der Fremdstoffe und deren Anteil variieren horizontal und lateral sehr stark. Neben mineralischen Bauabfällen sind Glas, Keramik/Steingut, Brandschutt, Holz, Papier, Metall, Textilien, Plastik und Belag vorhanden. Gemäss den Ergebnissen der Materialsortierung (vgl. Anhang 3.2) bilden mineralischen Bauabfälle, Glas, Keramik/Steingut, Belag und Papier/Pappe den Hauptanteil der Fremdstoff (Anteil an Grobfraktion > 1 cm).

Verbreitet treten hohe Anteile an feinkörnigem Brandschutt und Asche auf. Industrie- bzw. Betriebsabfälle wie Schlacke sind nur lokal in einzelnen Schichten (bis 20 Gew.-%) vorhanden.

Schadstoffgehalte

Die Schadstoffgehalte bzw. die Klassierung der analysierten Proben des Deponiematerials sind in Abbildung 1 dargestellt (total 27 Proben). Nachfolgend werden die einzelnen Schadstoffgruppen näher beschrieben.

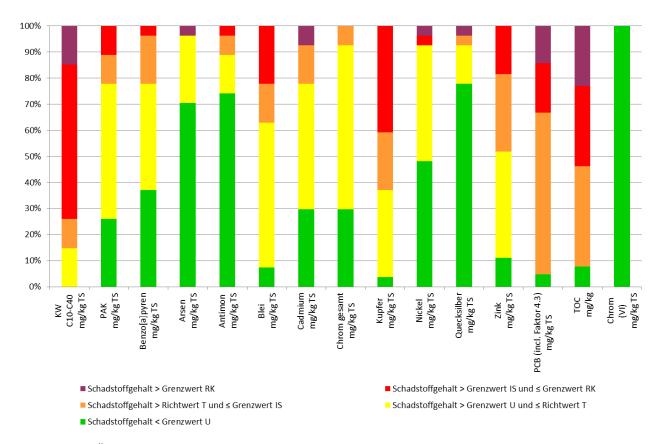


Abbildung 1: Übersicht zu den Schadstoffgehalten des Deponiematerials

Gehalte KW, PAK

Die Gehalte der Schadstoffe KW und PAK lagen bei 70 bzw. 20 % der Proben über den Inertstoffgrenzwerten. Bei KW überschritten 15 % der Proben den Grenzwert für Reaktorstoff. Die maximalen Gehalte betragen für KW 32'000 mg/kg und für PAK 54 mg/kg.

Schwermetallgehalte

Bei den Schwermetallen wiesen Blei (max. 1'900 mg/kg), Kupfer (max. 2'200 mg/kg) und Zink (max. 2'700 mg/kg) am häufigsten (20-40 % der Proben) Gehalte über dem Inertstoffgrenzwert auf.

Antimon, Arsen, Quecksilber und Nickel traten nur in Einzelproben in stark erhöhten Gehalten auf (vgl. Anhang 3.1). Die Chromat-Gehalte lagen in allen Proben unter der Bestimmungsgrenze.

РСВ

Für PCB traten bei ca. 35 % der Proben Gehalte über dem Inertstoffgrenzwert auf (max. Gehalt 460 mg/kg), nur 5 % der Proben erwiesen sich als unverschmutzt. Der Median der PCB-Gehalte beträgt o.7 mg/kg.

TOC

Der TOC-Gehalt lag bei rund 55 % der Proben über 20'000 mg/kg (Grenzwert Inertstoff), ca. 20 % der Proben wiesen einen TOC-Gehalt von > 50'000 mg/kg (Grenzwert Reaktorstoffe) auf. Eine semiquantitative Auswertung zeigt, dass der TOC-Gehalt tendenziell mit dem Anteil und Art der Fremdstoffe zusammenhängt. So beträgt der TOC-Gehalt in der Regel:

- < 20'000 mg/kg bei hauptsächlich mineralischen Fremdstoffen,
- 20'000-50'000 mg/kg, wenn der Anteil Holz, Schlacke, Brandschutt jeweils
 15 % ist,
- > 50'000 mg/kg bei hohem Anteil (> 15 %) an Holz, Brandschutt, Papier,
 Plastik

EC-Messungen

Die drei auf EC untersuchten Proben wiesen Gehalte von 35, 48 bzw. 100 % am TOC auf.

TVA-Eluate

Alle Schwermetallgehalte in den Eluaten (BS13-12-3 und BS13-17-4) lagen deutlich unterhalb der entsprechenden Grenzwerte der TVA für Reststoff.

Feinfraktion

Die Schadstoffgehalte der vier analysierten Feinfraktionen (< 1 cm) erwiesen sich nicht als systematisch anders als die entsprechenden Gesamtgehalte. Insbesondere konnten keine systematisch höheren Gehalte in der Feinfraktion festgestellt werden (keine "Aufkonzentrierung").

Radioaktivität

Die aktuelle Messkampagne hat, wie bereits die Untersuchung im Jahre 2011 [2], keine Hinweise auf radioaktive Abfälle (z.B. Radium 226) gezeigt.

Körnung der Matrix

Der Feinkornanteil (< 0.063 µm) der Matrix schwankt gemäss den durchgeführten Korngrössenanalysen bzw. den Schätzungen im Feld stark und beträgt 15 bis 40 Gew.-%. Die Ergebnisse dürften durch die heterogene Fremdstoffzusammensetzung beeinflusst sein. So führen hohe Ascheanteile wohl zu einer feinkörnigeren "Matrix".

Zuverlässiger konnte der Anteil von Kies und Steinen (Grobfraktion) bestimmt werden. Er beträgt 30-50 % von der mineralischen Fraktion bzw. rund 20 % bezogen auf das gesamte Deponiematerial (inkl. Fremdstoffe).

Wassergehalt

Der Wassergehalt der analysierten Proben betrug durchschnittlich 20 %.

3.5 Gewachsenes Terrain

Organoleptische Beurteilung

Der unter dem Deponiematerial anstehende Emmeschotter bzw. Schwemmablagerungen (nur in BS13-16) waren organoleptisch meist unverschmutzt. Vereinzelt waren in der obersten anstehenden Schicht Fremdstoffe eingemischt (< 5 Gew.-%).

Schadstoffgehalte

Von den drei untersuchten Proben wiesen zwei Schadstoffgehalte über dem Inertstoffgrenzwert auf (BS13-17/5 und BS13-19/5), bei der dritten (BS 13-16/4) lagen alle Gehalte unter dem Grenzwert U. Die Schadstoffgehalte widerspiegelten das

- 15 -

Belastungsmuster des überliegenden Deponiematerials. So wurden erhöhte Gehalte von KW, PCB, Kupfer und Zink festgestellt.

Die Eindringtiefe der chemischen Belastung lässt sich mit den vorliegenden Informationen nicht abschliessend bestimmen. Basierend auf Erfahrungswerten und den Untergrundverhältnissen dürften tiefgehende Belastungen (> 0.5 m) im gewachsenen Terrain unwahrscheinlich sein.

3.6 Porenluft

Im Rahmen der Technischen Altlastentersuchung [2] wurde an 10 Stellen die Porenluft untersucht (4-5 m ab OKT).

Stark erhöhte Methankonzentrationen (bis 20 Vol.-%) lagen im nördlichen Teil der Deponie und am Südrand vor (vgl. Situation in Anhang 2.3). Im zentralen Bereich waren die Konzentrationen deutlich geringer bzw. lagen unter der Bestimmungsgrenze.

Im gesamten Deponieperimeter waren auch die Kohlendioxidkonzentrationen stark erhöht (5-19 Vol.-%). Die höchsten Konzentrationen traten wie beim Methan im nördlichen Deponieteil bzw. am Südrand auf.

Methan

Kohlendioxid

4 Entsorgungskonzept

Geltungsbereich

Das vorliegende Vorgehens- und Entsorgungskonzept umfasst grundsätzlich den gesamten Projektperimeter.

Projektstand

Alle vorliegenden Angaben (insbesondere die Mengenschätzungen) basieren auf dem Projektstand Frühling 2014 (Bauprojekt).

Sanierungsziel

Die Bauherrschaft beabsichtigt sämtliches belastetes Aushubmaterial vom Standort zu entfernen (= Totaldekontamination). Insbesondere sollen auch allfällig belastetes anstehendes Material unter der Deponiesohle entfernt werden.

4.1 Belastungs-/Schichtmodell

Schichtmodell

Für den Sanierungsperimeter gilt basierend auf den vorliegenden Sondierungen das folgende generelle Schichtmodell (inkl. Schichtmächtigkeit und Angabe der Abfallkategorie):

- Oberboden: o.2 m, unbelastet bzw. schwach belasteter Bodenaushub (Inertstoff nach TVA)
- Deckschicht: 0-2 m, feinkörnig, U-Material bis Inertstoff
- Oberer Teil Deponiematerial: 1-2 m, mittelkörnig, Inertstoff, nur im Westteil, ca. 2000 m² (= "Überdeckung West")
- Deponiematerial: 1-5.5 m, mittelkörnig, Inertstoff bis > Reaktor-/Reststoff
- Emmeschotter / lokal Überschwemmungssedimente, U-Material bis Reaktorstoff

4.2 Entsorgungskategorien

Basierend auf den *Abfallkategorien* und der Materialzusammensetzung (Art und Anteil der Fremdstoffe, Matrix) wurden *Entsorgungskategorien* definiert (vgl. Tabelle 1). Dabei wurden auch die möglichen Entsorgungswege (insbesondere die Behandlungsmöglichkeiten) berücksichtigt.

Tabelle 1: Entsorgungskategorien

Bezeich- nung	Abfallkategorie nach TVA/WBA	Beschreibung	
U	U-Material	FKA unterschiedlich, Schadstoffgehalte < Grenzwerte U. o % FSA	
OB Kat. I	unbelastet	Oberbodenaushub unbelastet	
OB Kat. II	schwach belastet, Inertstoff	Oberbodenaushub schwach belastet, Schadstoffgehalte < Grenzwerte I	
T2	tolerierbares Aushubmaterial	FKA <15 %, Schadstoffgehalte < Richtwerte T	
Т3	tolerierbares Aushubmaterial	FKA 15-30 %, Schadstoffgehalte < Richtwerte T	
Т4	tolerierbares Aushubmaterial	FKA > 30 %, Schadstoffgehalte < Richtwerte T	
l ₂	Inertstoff	FKA <15 %, Schadstoffgehalte < Grenzwerte I	
l ₃	Inertstoff	FKA 15-30 %, Schadstoffgehalte < Grenzwerte I	
14	Inertstoff	FKA > 30 %, Schadstoffgehalte < Grenzwerte I	
RK2a	Reaktorstoff	FKA < 15 %, Schadstoffgehalte < Grenzwerte I, TOC < Grenzwert RK FSA unterschiedlich, < 15 % org. Fremdstoffe wie Holz, Brandschutt, Plastik	
RK2b	Reaktorstoff	FKA < 15 %, Schadstoffgehalte < Grenzwerte RK, FSA unterschiedlich. < 15 % org. Fremdstoffe wie Holz, Brandschutt, Plastik	
RK3a	Reaktorstoff	FKA 15-30 %, Schadstoffgehalte < Grenzwerte I , TOC < Grenzwert RK FSA unterschiedlich, < 15 % org. Fremdstoffe wie Holz, Brandschutt, Plastik	
RK3b	Reaktorstoff	FKA 15-30 %, Schadstoffgehalte < Grenzwerte RK, FSA unterschiedlich, < 15 % org. Fremdstoffe wie Holz, Brandschutt, Plastik	
RK4	Reaktorstoff	FKA > 30 %, Schadstoffgehalte < Grenzwerte RK, FSA unterschiedlich, < 15 % org. Fremdstoffe wie Holz, Brandschutt, Plastik	
>RK2a	> Reaktor-/Reststoff	FKA < 15 %, Schadstoffgehalte < Grenzwerte RK, TOC < Grenzwert RK FSA unterschiedlich	
>RK2b	> Reaktor-/Reststoff	FKA < 15 %, Schadstoffgehalte: KW < 50'000 ppm, PAK < 100 ppm; TOC < 200'000 ppm; PCB < 500 ppm; As < 100 ppm, Hg < 10 ppm; Cd < 30 ppm; Ni < 2'000 ppm, restliche Schadstoffe < Grenzwerte RK, FSA unterschiedlich	
>RK3a	> Reaktor-/Reststoff	FKA 15-30 %, Schadstoffgehalte < Grenzwerte RK, TOC < Grenzwert RK, FSA unterschiedlich	
>RK3b	> Reaktor-/Reststoff	FKA 15-30 %, Schadstoffgehalte: KW < 50'000 ppm, PAK < 100 ppm; TOC < 200'000 ppm; PCB < 500 ppm; As < 100 ppm, Hg < 10 ppm; Cd < 30 ppm; Ni < 2'000 ppm, restliche Schadstoffe < Grenzwerte RK, FSA unterschiedlich	
>RK4	> Reaktor-/Reststoff	FKA >30 %, Schadstoffgehalte: KW < 50'000 ppm, PAK < 100 ppm; TOC < 200'000 ppm; PCB < 500 ppm; As < 100 ppm, Hg < 10 ppm; Cd < 30 ppm; Ni < 2'000 ppm, restliche Schadstoffe < Grenzwerte RK, FSA unterschiedlich	

FKA: Feinkornanteil; FSA: Fremdstoffanteil; I: Inertstoff; T: tolerierbares Aushubmaterial; RK: Reaktorstoff

4.3 Mengen und Entsorgungswege

Grundlage

Zur Erstellung der Materialbilanz wurde der gesamte Aushubbereich, ausgehend von den beprobten Rasterpunkten, in verschiedene potenzielle Aushubfelder (ca.500 m²) eingeteilt. Dabei bildet der Baggerschlitz i.d.R. den Mittelpunkt der Fläche und wird als repräsentativ für das gesamte Aushubfeld angenommen. Den einzelnen Schichten wurden die definierten Entsorgungskategorien zugewiesen.

Kubaturen

Über die Fläche der potenziellen Aushubfelder und die Aushubtiefen wurden die Kubaturen der anfallenden Aushubmaterialien ermittelt (= best Guess-Szenario, vgl. Tabelle in Anhang 4).

Aufgrund der grossen räumlichen Heterogenität des Deponiematerials können die zugeordneten Entsorgungskategorien pro potenziellem Aushubfeld nicht direkt für die Klassierung beim Aushub verwendet werden. Die durchgeführte Zuordnung erlaubt aber eine Aussage zur ungefähren Verteilung der Entsorgungskategorien.

Annahmen

Nachfolgend sind die wichtigsten Annahmen aufgeführt:

Fläche: : 10'300 m²
 Durchschnittliche Mächtigkeit : 4.7 m
 Dichte Oberboden: 1.6 t/m³
 Dichte Deckschicht/Emmeschotter 1.9 t/m³
 Dichte Deponiematerial 1.6 t/m³

Mengen

Mit den obigen Annahmen ergeben sich die folgenden Kubaturen an Aushubmaterial (detaillierte Aufstellung vgl. Anhang 4).

Oberbodenaushub ca. 2'400 m³ (fest)
 Aushub Deckschicht: ca. 6'200 m³ (fest)
 Deponiematerial: ca. 36'600 m³ (fest)
 Belasteter Schotter: ca. 3'000 m³ (fest)
 Total: ca. 48'200 m³ (fest)

Verteilung Abfallkategorien

Über den gesamten Aushubbereich (ohne Bodenaushub) ist die folgende Verteilung zu erwarten:

• ca. 35-40 % > Reaktor-/Reststoff

o % Reststoff
 ca. 35-40 % Reaktorstoff
 ca. 10-15 % Inertstoff

• ca. 10-15 % tolerierbares Aushubmaterial (T-Material)

• ca. 5 % U-Material

Entsorgungswege

In Tabelle 2 sind die Mengen und mögliche Entsorgungswege für den anfallenden Aushub aufgeführt.

Tabelle 2: Mengen und Entsorgungswege

Entsorgungs- kategorie	Menge [m³ fest]	Mögliche Entsorgungswege	
U	1'520	Wiederverwendung, Aushubdeponie	
OB Kat. I	1'000	Wiederverwendung vor Ort (Projektperimeter HWS-Projekt)	
OB Kat. II	1'400	Inertstoffdeponie	
T ₂	1'820	Inertstoffdeponie	
T ₃	2'400	Inertstoffdeponie	
Т4	990	Inertstoffdeponie	
l ₂	1'180	Inertstoffdeponie, Behandlung in Vor-Ort-Aufbereitungsanlage	
l3	2'470	Inertstoffdeponie, Behandlung in Vor-Ort-Aufbereitungsanlage	
14	1'810	Inertstoffdeponie, Behandlung in Vor-Ort-Aufbereitungsanlage	
RK2a	620	Behandlung extern, Reaktordeponie, Behandlung in Vor-Ort- Aufbereitungsanlage	
RK2b	5'490	Behandlung extern, Reaktordeponie, Behandlung in Vor-Ort- Aufbereitungsanlage	
RK3a	900	Behandlung extern, Reaktordeponie, Behandlung in Vor-Ort- Aufbereitungsanlage	
RK3b	8'090	Behandlung extern, Reaktordeponie, Behandlung in Vor-Ort- Aufbereitungsanlage	
RK4	1'120	Reaktordeponie, Behandlung extern, Behandlung in Vor-Ort- Aufbereitungsanlage	
>RK2a	0	Behandlung extern, Behandlung in Vor-Ort-Aufbereitungsanlage	
>RK2b	6'350	Behandlung extern, Behandlung in Vor-Ort-Aufbereitungsanlage	
>RK3a	3'360	Behandlung extern, Behandlung in Vor-Ort-Aufbereitungsanlage	
>RK3b	4'820	Behandlung extern, Behandlung in Vor-Ort-Aufbereitungsanlage	
>RK4	2'840	Behandlung extern, Behandlung in Vor-Ort-Aufbereitungsanlage	
Total	48'180		

Verwendung Bodenaushub

Schwach belasteter Bodenaushub (Entsorgungskategorie OB Kat. II) könnte vor Ort oder auf Flächen mit gleicher oder höherer Vorbelastung aufgebracht werden. Gemäss aktuellem Planungsstand ist jedoch keine Verwendung von Bodenaushub vorgesehen.

Definitive Entsorgungswege

Die Entsorgungsanlagen sind zum heutigen Zeitpunkt noch nicht bekannt, da die Aushub- und Entsorgungsarbeiten noch nicht vergeben sind. Der Unternehmer wird verpflichtet, die definitiven Entsorgungswege im Rahmen der Ausschreibung Kapazitäten Entsorgung

Unsicherheiten Ausmass bekannt zu geben. Dabei ist insbesondere über die Realisierung einer Vor-Ort-Aufbereitung-Anlage zu entscheiden (vgl. Kapitel 5).

Für die Ablagerung in (regionalen) Inertstoff- und Reaktorstoffdeponien stehen genügend Kapazitäten zur Verfügung. Für die (externe) Behandlung der Entsorgungskategorien > Reaktorstoff stehen einzelne Anlagen mit genügend Kapazität zur Verfügung (z.B. BAZO, Eberhard Recycling AG, Oberglatt).

Die Angaben zur Gesamtmenge und zu den Mengen der einzelnen Entsorgungskategorien entsprechen einem Best-Guess-Szenario (wahrscheinlichsten Fall). Die Angaben sind mit Unsicherheiten behaftet. Bzgl. Gesamtmengen beträgt die Unsicherheit plus/minus 10 %, bzgl. der einzelnen Entsorgungskategorien mindestens plus/minus 30%. Eine weitere Reduktion der Unsicherheiten ist vor Baubeginn nicht möglich, respektive es wären unverhältnismässige Zusatzuntersuchungen nötig.

4.4 Rahmenbedingungen für (Vor-Ort)-Behandlung

Hohe Verwertungsquote erwünscht

Minimales Ziel der Behandlung von Deponiematerialfraktionen ist die Erfüllung der Anforderungen der TVA. Weiter ist eine möglichst gute Auftrennung der verschiedenen Abfallfraktionen zu erreichen und – unter Beachtung der technischen Machbarkeit und der wirtschaftlichen Tragbarkeit gemäss Art. 12 Abs. 3 lit. a TVA eine hohe Verwertungsquote zu erzielen.

Es stehen dabei die folgenden Vorgaben bzw. Massnahmen im Vordergrund:

- Abtrennen des recyclingfähigen Fremdstoffanteils (Metalle, etc.)
- Abtrennen brennbarer (organischer) Fremdstoffbestandteile
- Abtrennen mineralischer Fremdstoffbestandteile
- Abtrennen der mineralischen Grobfraktion (Kies und Steine)
- Reduktion der Menge der Abfallkategorie >Reaktor-/Reststoff bzw. Reaktorstoff
- Lokale Entsorgungswege für die behandelten Fraktionen bevorzugen

5 Vorgehen

5.1 Rahmenbedingungen

Grundsatz

Sämtliches belastetes Material im Standortperimeter wird ausgehoben und zur Behandlung/Entsorgung weggebracht. Der Aushub wird vor Ort oder extern soweit triagiert bzw. behandelt, dass eine TVA-konforme Entsorgung möglich ist.

Behandlung Aushub > Reaktorstoff

Material, dass beim Aushub die Anforderungen an Inertstoff bzw. Reaktorstoff erfüllt, kann direkt entsorgt werden (Ablagerung auf entsprechender Deponie). Das restliche Aushubmaterial muss zwingend behandelt bzw. konditioniert werden.

Umgang mit Deponiematerial

Für den Aushub und die Entsorgung des Deponiematerials kommen grundsätzlich zwei Varianten in Frage:

- Aushubtriage: Triage des Aushubs vor Ort, chargenweise (ca. 200-400 m³)
 Zwischenlagerung, Beprobung, Klassierung und entsprechende Entsorgung. Die Abfallkategorien Inertstoff und Reaktorstoff können direkt entsorgt werden (z.B. Deponien). Die Abfallkategorie > Reaktor-/Reststoff wird einer Behandlung zugeführt.
- Vollständige Aufbereitung: der gesamte Aushub des Deponiematerials wird unabhängig von den Entsorgungskategorien in einer zentralen Aufbereitungsanlage behandelt.

Es sind auch Mischformen der beiden Varianten denkbar, d.h. z.B. eine Reduktion des zu behandelnden Materials durch eine Grobtriage beim Aushub.

Behandlungsanlage

Die Behandlung bzw. Aufbereitung des ausgehobenen Deponiematerials kann in einer externen Anlage oder in einer Vor-Ort-Anlage ausgeführt werden. Die definitive Vorgehensweise wird im Rahmen des Bauprojekts noch nicht festgelegt, sondern erst mit der Ausschreibung und Vergabe der Sanierungsarbeiten. Eine Vor-Ort-Aufbereitungsanlage soll aber in jedem Fall möglich sein. Dazu werden die entsprechenden Rahmenbedingungen geschaffen (vgl. Kapitel 5.5).

3 Deponien gemeinsam

Die Altlastensanierung der Deponie Rüti wird gemeinsam mit der Sanierung der Deponie Schwarzweg und der Bioschlammdeponie Schachen erfolgen. Die Sanierung erfolgt vor den eigentlichen Wasserbauarbeiten und wird als eigenständiges Teilprojekt bearbeitet und als separates Unternehmerlos ausgeschrieben werden.

Die Installationsplätze und Erschliessungsanlagen (Transportpisten) für die Altlastensanierung werden für den Wasserbau mindestens teilweise weiter gebraucht.

5.2 Sanierungsablauf und -dauer

Ablauf

Nachfolgend sind der generelle Ablauf bzw. die groben Arbeitsschritte der Altlastensanierung aufgeführt (vgl. Anhang 7).

- Roden der Teilfläche 1 und der Erschliessungs- /Installationsflächen
- Ggf. Errichten einer zentralen Vor-Ort-Aufbereitungsanlage auf den vorgesehenen Installationsplätzen Grütschachen oder Kohlenlagerplatz im HIAG-Areal (vgl. Kapitel o)
- Bau der Installation- und Erschliessungsanlagen (inkl. Schutzmassnahmen)
- Aushub und Entsorgung Teilfläche 1 (in Etappen 1a-1d)
- Wenn nötig: abschnittsweise Errichtung eines temporären Damms (Ersatz bestehender Damm) entlang der Emme
- Beurteilung Sohle, Sohlenproben, evtl. Zusatzaushub Emmeschotter
- Roden der Teilfläche 2
- Aushub und Entsorgung Teilfläche 2 in Etappen (2a und 2b)
- Beurteilung Sohle, Sohlenproben, evtl. Zusatzaushub Emmeschotter
- Teilweise Wiederauffüllung (Anschüttung) im westlicher Deponieteil (entlang Emmenweg bzw. GB-Nr. 1254)
- Rückbau Installation und Vor-Ort-Aufbereitungsanlage

Kapazitäten Aushub

Zur Abschätzung des Zeitbedarfs wird in erster Linie auf Erfahrungswerte von Altlastensanierungen vergleichbarer Standorte abgestellt. Bei diversen kleineren Deponie-Sanierungen in der Schweiz konnten Tagesleistungen bis ca. 500 m³ fest/Tag erreicht werden. Bei der Sanierung Geissschachen (Projekt obere Emme) wurden ca. 300 m³ fest/Tag erreicht. Aufgrund der grossen Gesamtkubatur beurteilen wir eine Tagesleistung von 500 bis 600 m³ fest/Tag als realistisch.

Die genannte Tagesleistung kann nur erreicht werden, falls bei keinem Sanierungsschritt ein Engpass entsteht. Insbesondere sind die Abbauleistung, die Kapazität der Aufbereitung vor Ort, die Abfuhrleistung sowie die Kapazitäten der Entsorger zu berücksichtigen.

Kapazitäten Entsorgung

Die Abbauleistung, die Aufbereitung vor Ort und die Abfuhr können prinzipiell entsprechend der gewünschten Tagesleistung ausgelegt werden. Gemäss aktuellem Kenntnisstand sind bei den (externen) Entsorgungsanlagen keine Kapazitätsengpässe zu erwarten (vgl. Kapitel 4.3).

Zeitbedarf

Für den Aushub, die Triage und den Abtransport der Gesamtkubatur von 48'ooo m^3 fest Aushubmaterial ergibt sich bei einer Tagesleistung von 500 bis 600 m^3 fest/Tag ein Zeitbedarf von rund 80 bis 96 Arbeitstagen = 16 bis 20 Arbeitswochen = 4 bis 5 Monate.

Nicht eingerechnet in obige Zeit sind Installations- und Vorbereitungsarbeiten (Bau Erschliessung, Vor-Ort-Aufbereitungsanlage, Roden, etc) sowie die Wieder-

herstellung / Rekultivierung. Bei Berücksichtigung dieser Arbeiten ergibt sich ein Zeitbedarf von ca. 5 bis 7 Monaten.

Zeitplan

Die Altlastensanierung der drei Deponien Rüti, Schwarzweg und Bioschlamm Schachen soll Mitte 2016 bis Ende 2017 erfolgen. Die Aushubarbeiten auf der Deponie Rüti sind für Herbst/Winter 2016/17 geplant.

5.3 Installation und Schutzmassnahmen

Erschliessung/Logistik

Der Sanierungsperimeter wird von der Emme her erschlossen. Falls kein Material in der Vor-Ort-Aufbereitungsanlage (Installationsplätze Grütschachen bzw. Kohlenlagerplatz HIAG Areal, Biberist) behandelt wird, ist auch eine Erschliessung über den Emmeweg als Variante vorgesehen (vgl. Anhang 7).

Triage/Zwischenlager

Flächen für Triage und Zwischenlager sind ist aus Immissionsschutzgründen möglichst emmenseitig vorzusehen. Zur Vermeidung von Verschleppungen ist weiter eine Radwaschanlage für die LKW bzw. Dumper vorzusehen.

Umzäunung

Der gesamte Sanierungsperimeter wird von einer festen, mindestens 3 m hohen Bauwand umgeben, um Personen vom Areal fernzuhalten. Gleichzeitig dient die Bauwand als Sicht- und im beschränkten Ausmass als Staubschutz.

Immissionsschutz

Zur Reduktion der Lärm-, Staub und Geruchsemissionen sind die folgenden Massnahmen vorgesehen (vgl. Anhang 7):

- Die Teilfläche 2 (ca. 25 m Streifen entlang Emmeweg) wird erst nach erfolgter Sanierung der Etappe 1 gerodet und dient so als Sicht- und Immissionsschutz.
- Der Aushub des Deponiematerials erfolgt in Etappen, es werden möglichst kleine Flächen "geöffnet" (vgl. Kapitel 5.4).
- Es sind spezifische Staubbekämpfungsmassnahmen wie Benetzung/ Sprühnebel vorzusehen.
- Treten starke Geruchsimmissionen auf wird der Aushub lokal in einem geschlossenen Zelt mit Luftreinigung erfolgen (Einhausung).

Grundwasser

Da die Deponiesohle über dem Höchstgrundwasserspiegel liegt, sind keine speziellen Massnahmen zur Wasserhaltung vorgesehen.

Temporärer Damm

Der bestehende Damm am Emmeufer muss während und nach der Sanierung erhalten bleiben. Belastete Teile des Damms werden entfernt und mit unverschmutztem Aushubmaterial ersetzt (temporärer Damm).

Kat-Nr. 1254

Gemäss den Informationen aus der Historischen Untersuchung sind auf dem Grundstück GB-Nr. 1254 (Emmeweg 1) keine belasteten Auffüllungen zu erwarten [1]. Wie weit die Belastungen an die Parzellengrenze reichen ist allerdings nicht bekannt. In einem ersten Schritt wird bis max. 10 m zur Parzellengrenze ausgehoben bzw. saniert (vgl. Interventionslinie in Anhang 7). Ist ein weitergehender Aus-

hub notwendig, wird baubegleitend ein Vorgehenskonzept erarbeitet (z.B. abschnittsweiser Aushub mit Wiederverfüllung oder ggf. Böschungssicherungsmassnahmen).

5.4 Aushub und Triage

Etappen

Der Aushub erfolgt etappiert in Teilflächen von max. 2000 m² (vgl. Anhang 7). Dabei ist die offene Aushubfläche des Deponiematerials möglichst zu minimieren (Ziel ca. 500 m²). Die Teilfläche 2 wird erst nach erfolgter Sanierung von Teilfläche 1 gerodet und ausgehoben (vgl. auch Kapitel 5.3).

Der Abtrag des Oberbodens ist auch in grösseren Etappen möglich.

Oberboden und Deckschichten

Der Oberboden, die Deckschicht sowie die Überdeckung West (vgl. Kapitel o) werden in jedem Fall getrennt ausgehoben, zwischengelagert und entsorgt.

Triage Deponiematerial

Beim Aushub des Deponiematerials erfolgt eine Grobtriage anhand der Art und Menge der Fremdstoffe sowie wenn möglich anhand der Körnung. Grosse Fremdstoffbestandteile (> 1 m, Metall, Holz, weiteres) werden in jedem Fall beim Aushub aussortiert. Mit der Grobtriage werden die folgenden Hauptfraktionen (bzw. Fremdstoffzusammensetzung) erfasst:

- Fremdstoffanteil < 5 % (v.a. mineralische Bauabfälle)
- v.a. mineralische Bauabfälle
- Anteil organische Fremdstoffanteile (Holz, Papier, etc.) < 15 Gew.-%
- Aushub mit Schlacke
- Restfraktion

Für die erste Grobtriage des Deponiemateriales sind neben konventionellen Aushubbaggern auch Bagger mit Sieblöffeln (Gitterlöffel) vorzusehen.

Klassierung

Die Hauptfraktionen werden in Chargen à 200-400 m³ vor Ort zwischengelagert, beprobt und nach Vorliegen der chemischen Analysen klassiert und einer Entsorgungskategorie zugewiesen.

Vollständige Behandlung Deponiematerial

Bei vollständiger Behandlung des Deponiematerials kann die Triage u.U. auf das Abtrennen der groben Fremdstoffanteile reduziert werden. Allerdings dürfte eine gewisse Vortriage auch für den Betrieb der Behandlungsanlage notwendig bzw. sinnvoll sein. In jedem Fall wird das Material vor der Behandlung chargenweise beprobt und klassiert (Input-Kontrolle). Dazu ist mit dem Unternehmer ein detailliertes Vorgehens- und Kontrollkonzept zu erarbeiten.

Aushub Emmeschotter

Der anstehende Emmeschotter wird in Schichten von 30 cm ausgehoben, zwischengelagert (Chargen à 200 m³), beprobt, nach Vorliegen der chemischen Analysen klassiert und einer Entsorgungskategorie zugewiesen.

- 25 -

Analysenparameter

Als Analysenparameter für Haufen- und Sohlenproben sind TOC, KWI, PAK, PCB und Schwermetalle (As, Sb, Pb, Cd, Cu, Hg, Zn) vorgesehen.

Radioaktivität

Da allfällig erhöhte Radiumgehalte sehr lokal auftreten würden, werden die Materialchargen vor dem Abtransport chargenweise auf Radioaktivität überprüft. Der genaue Prüfplan wird vor Baubeginn in Zusammenarbeit mit dem BAG, der Fachbauleitung Altlasten und dem Entsorgungsunternehmer festgelegt.

Die benötigten Zwischenlager- und Triageplätze werden vor Ort auf dem Deponieperimeter (noch nicht sanierter Teil) errichtet. Zwischenlager werden witterungsfest abgedeckt. Auf eine Befestigung der Zwischenlagerflächen kann verzichtet werden.

Fachbauleitung Altlasten

Die gesamten Aushub-, Triage- und Entsorgungsarbeiten werden durch eine Fachperson mit Weisungsbefugnis geleitet und überwacht (Fachbauleitung Altlasten).

5.5 Vor-Ort-Aufbereitungsanlage

Konzept/Ziele

Mit einer Vor-Ort-Aufbereitung sollen aus dem Deponiematerial die verwertbaren Anteile gewonnen werden. So können Metalle, Holz, Plastik sowie der Kiesanteil abgetrennt werden. Idealerweise gibt es nach der Aufbereitung kein Material der Abfallkategorie > Reaktorstoff mehr. Zusätzlich führt die Aufbereitung zur einer Mengenreduktion des auf Deponien (Inertstoff und Reaktorstoff) abzulagernden Materials (vgl. auch Kapitel 4.4).

Eine Aufbereitungsanlage kann die folgenden Komponenten bzw. Anlageteile umfassen (keine abschliessende Aufzählung):

- Mechanische Siebanlagen (z.B. zur Abtrennung der Grobfraktion)
- Nasssiebverfahren
- Magnetabscheider für Metalle
- Windsichteranlage f
 ür Plastikteile
- Manuelle Sortieranlage (Entfernung von Fremdstoffen)

Lage

Für die Installation einer Vor-Ort-Aufbereitungsanlage können die Installationsplätze Grütschachen in Biberist (Kat.-Nr. 777 rund 10'000 m²) oder das Areal des ehemaligen Kohlelagerplatzes auf dem HIAG-Gelände genutzt werden (vgl. Projektpläne bzw. Situation in Anhang 7). Beide Standorte liegen in der Industriezone und befinden sich mindestens teilweise auf belasteten Standorten (Nrn. 22.043.0021A bzw. 22.043.0329B). Der Standort Grütschachen wird heute teils als Parkplatz teils als Grünland genutzt.

Art und Umfang der Vor-Ort-Aufbereitungsanlage wird im Rahmen der Submission und Vergabe der Entsorgungsarbeiten durch den Unternehmer definiert. Dabei sind die untenstehenden Anforderungen und Rahmenbedingungen zu beachten.

Anforderungen

Für die Errichtung einer (mobilen) Vor-Ort-Aufbereitungsanlage auf den Installationsplätzen gelten die folgenden Anforderungen und Rahmenbedingungen:

- Der allfällige vorhandene Boden ist vorgängig abzutragen und zwischenzulagern.
- Der gesamte Platz ist vollständig zu befestigten (Kieskoffer mindestens 60 cm mächtig).
- Der Bereich der Anlage inkl. Zwischenlager-, Umschlags- und Erschliessungsflächen ist zu versiegeln und zu entwässern.
- Das anfallende Abwasser ist zu behandeln
- Der Installationsplatz ist vollständig einzuzäunen (Sicht-, Lärm- und Staubschutz für die Umgebung).
- Die eigentliche Behandlungsanlage ist soweit einzuhausen, dass keine unzulässigen Lärm-, Staub- und Geruchsimmissionen in der Umgebung entstehen.
- Vor Baubeginn wird der Unternehmer ein bewilligungsfähiges Detailkonzept zur Anlage inkl. aller Schutzmassnahmen vorlegen.

5.6 Konzept Erfolgskontrolle

Beurteilung Aushubsohle

Nach dem Aushub des belasteten Deponiematerials und von belastungsverdächtigem Emmeschotter wird das anstehende Material organoleptisch beurteilt und es werden Sohlenproben entnommen. Die Analysenparameter richten sich nach den Befunden im überliegenden Deponiematerial.

5.7 Überwachung der Sanierung

Während der Sanierung wird das Grundwasser im Abstrombereich des Standorts überwacht. Nachstehend sind die entsprechenden Vorgaben aufgeführt.

Probnahmestelle

Zur Überwachung wird die bestehende Grundwasserprobenahmestelle KB₄.1/11 verwendet (vgl. [2] bzw. Anhang 7).

Analysenprogramm

Neben den allgemeinen Grundwasserinhaltstoffen wie Ammonium, Nitrit, Nitrat, DOC, etc. sind als Analysenparameter *Flüchtige Organische Verbindungen* (VOC), PCB und Schwermetalle (nach AltIV) vorgesehen.

Beprobungsintervalle

Die Überwachung ist in drei Phasen unterteilt: vor Baubeginn, Aushub und Erfolgskontrolle und nach Abschluss der Arbeiten. Ca. 2 Monate vor Baubeginn erfolgt die erste Beprobung (Nullmessung). Während der Tiefbau- bzw. Erdarbeiten (ca. 4 Monate) soll alle 4 Wochen beprobt werden (Total 4 Probenahmen). Zwei Monate nach Abschluss der Tiefbauarbeiten ist die Erfolgskontrolle geplant. Total sind sechs Untersuchungen vorgesehen.

5.8 Störfallvorsorge und Arbeitssicherheit

Arbeitssicherheit

Aufgrund des teilweise stark belasteten Aushubmaterials und den hohen Deponiegas-Konzentrationen sind in der Aushubphase die folgenden Arbeitssicherheitsmassnahmen zu treffen:

• Normale Vorsichtsmassnahmen wie kein direkter Hautkontakt mit dem Aushubmaterial (Schutzhandschuhe).

Gassicherheit

Während der Aushubarbeiten sind Gassicherungsmassnahmen zu treffen:

- Alle Arbeitsstellen sind gut zu belüften (wenn nötig aktiv).
- Alle Beteiligte sind entsprechend zu instruieren.
- Vertiefungen werden nur mit Gaswarngerät (Messung von Methan und CO₂) begangen.
- Zum Schutz der Arbeiter sind Grubenbelüftungsgeräte vorzuhalten.
- Für Methan und CO₂ sind für die Bauphase Interventionswerte festzulegen (Vorschlag: Methan: 5000 mL/m³, CO₂: 3000 mL/m³)
- Werden die Interventionswerte überschritten, trifft die Bauleitung bzw. der Unternehmer in Absprache mit der Fachbauleitung Altlasten geeignete Massnahmen (Belüftung).

5.9 Organisation und Reporting

Fachbauleitung Altlasten

Die Projektbeteiligten (Unternehmer, Bauleitung, etc.) sind aktuell noch nicht bekannt. Alle Aushub- und Entsorgungsarbeiten werden durch die Fachbauleitung Altlasten überwacht und dokumentiert.

Freigaben

Das Abführen und Entsorgen von belasteten Bauabfällen erfolgt nur nach Freigabe durch die Fachbauleitung Altlasten.

Kontrolle Ausmass

Zwecks laufender Kontrolle des Ausmasses liefert der Unternehmer der Fachbauleitung Altlasten wöchentlich das Ausmass der abgeführten, belasteten Bauabfälle nach Chargen. Diese dokumentiert die Mengen und erstattet der Bauherrschaft und den Vollzugsbehörden periodisch Bericht.

Entsorgungsnachweis

Der Unternehmer erstellt nach Abschluss der Aushubarbeiten z.H. der Bauherrschaft tabellarisch das Ausmass zusammen (inkl. Lieferscheinen).

Schlussbericht

Die Fachbauleitung Altlasten erstellt einen Schlussbericht, worin die Aushubarbeiten beschrieben, die entsorgten Mengen dokumentiert und der Dekontaminationserfolg aufgezeigt werden.

5.10 Auswirkungen auf die Umwelt

Auswirkungen

Auswirkungen auf die Umwelt entstehend in erster Linie durch die baulichen Massnahmen der Sanierung. Diese werden im Umweltverträglichkeitsbericht zum Hochwasserschutzprojekt beurteilt.

Verbleibende Umweltgefährdung

Mit den Sanierungsmassnahmen wird sämtliches belastetes Material im Projektperimeter entfernt. Der Projektperimeter ist nach Abschluss der Altlastensanierung gemäss Art. 2 Abs. 1 lit. a AltIV ein nicht belasteter Standort.

6 Haftungsbeschränkung

Alle Arbeiten der FRIEDLIPARTNER AG wurden unter Einhaltung der Sorgfaltspflicht ausgeführt. Die Ergebnisse und Schlussfolgerungen im vorliegenden Bericht beruhen auf dem derzeitigen Kenntnisstand. Die FRIEDLIPARTNER AG übernimmt keine Haftung für die Folgen aus unbekannten oder verschwiegenen Tatsachen. Die Ergebnisse gelten nur für das untersuchte Objekt und können nicht unüberprüft auf andere Objekte oder andere Verhältnisse übertragen werden.

Lars Knechtenhofer

dipl. Umwelt-Natw. ETH / MAS MTEC ETH

Zürich, 8. August 2014

Daniel Bürgi

dipl. Natw. ETH / NDS BWI ETH

Geschäftsleiter Projektleiter

Hochwasserscl	nutz und Revitalisierung Emme Solothurn, Wehr Biberist bis Aare		
Sanierungspro	jekt Deponie Rüti - 30 -		
Tabellenve	erzeichnis		
Tabelle 1:	Entsorgungskategorien17		
Tabelle 2:	Mengen und Entsorgungswege19		
Abbildungsverzeichnis			
Abbildung 1:	Übersicht zu den Schadstoffgehalten des Deponiematerials13		

Hochwasserschutz und Revitalisierung	Emme Solothurn,	Wehr Biberist bis Aare
Sanierungsprojekt Deponie Rüti		

Anhang 1

Anhang 1

Lage Probenahmestellen

Lage Probenahmestellen 1:1'000Format: A3 Plangrundlage: SO-GIS, Orthophoto

Standortperimeter

Baggerschlitz SolGeo AG (2011)

Baggerschlitz FRIEDLIPARTNER AG (2013)

Baggerschlitzbezeichnung Deponiemächtigkeit in [m]

FRIEDLIPARTNER AG

GEOTECHNIK ALTLASTEN UMWELT

Sanierungsprojekt inkl. Entsorgungskonzept (Bauprojekt)

HWS und Revitalisierung Emme Kehrichtdeponie Rüti Zuchwil

Hochwasserschutz und Revitalisierung Emme Solothurn, Wehr Biberist bis Aare Sanierungsprojekt Deponie Rüti

Anhang 2

A2.1: Belastungsplan Oberboden

A2.2: Belastungsplan Deckschicht

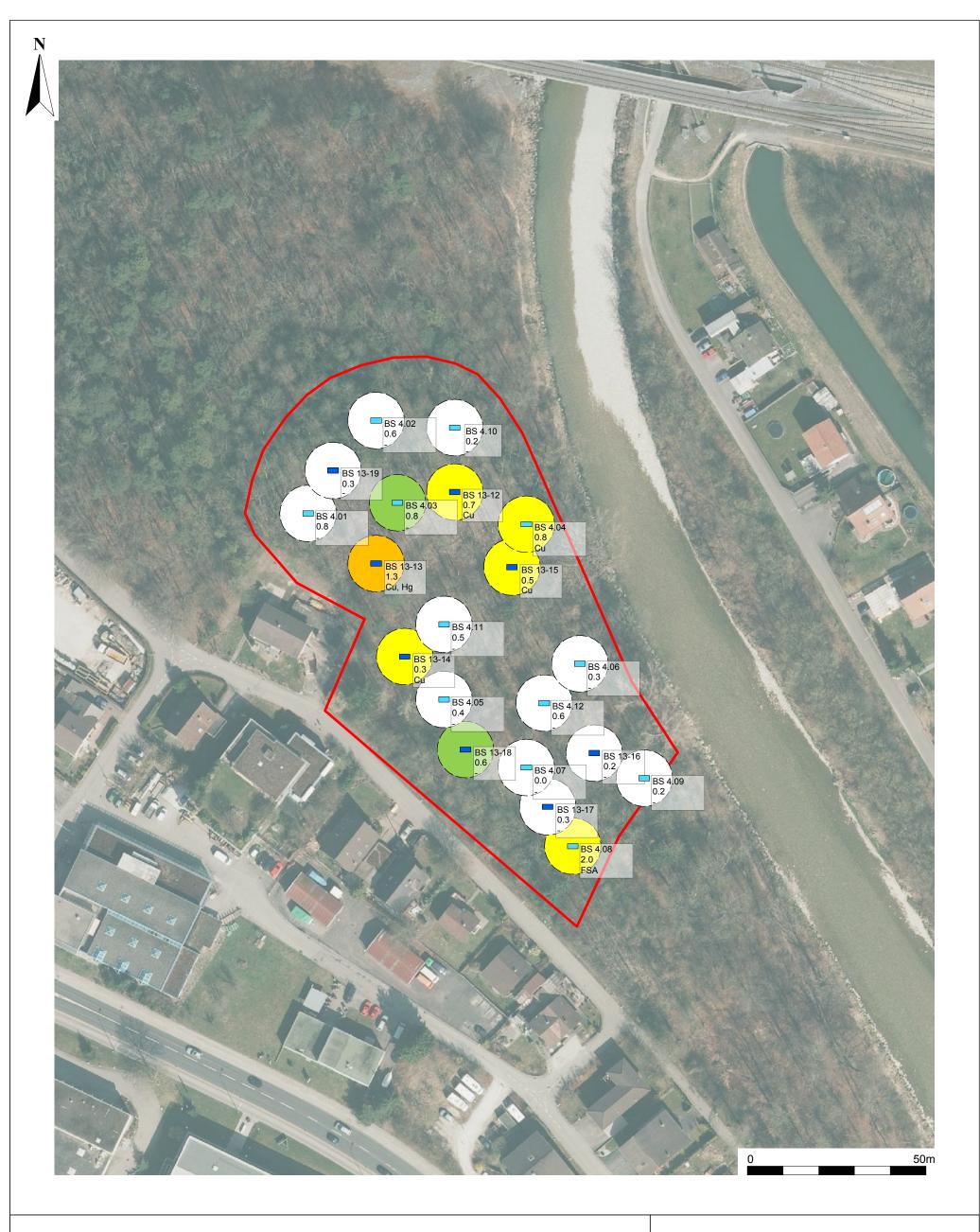
A2.3: Belastungsplan Deponiematerial

Belastungsplan Oberboden 1:1'000 Format: A3 Plangrundlage: SO-GIS, Orthophoto

Standortperimeter

Flächenprobe VBBo (FRIEDLIPARTNER AG, 2012)

Unbelasteter Bodenaushub (Kat. I)


Schwach belasteter Bodenaushub (Kat. II)

FRIEDLIPARTNER AG

GEOTECHNIK ALTLASTEN UMWELT

Sanierungsprojekt inkl. Entsorgungskonzept (Bauprojekt)

HWS und Revitalisierung Emme Kehrichtdeponie Rüti Zuchwil

Belastungsplan Deckschicht 1:1'000

Format: A3 Plangrundlage: SO-GIS, Orthophoto

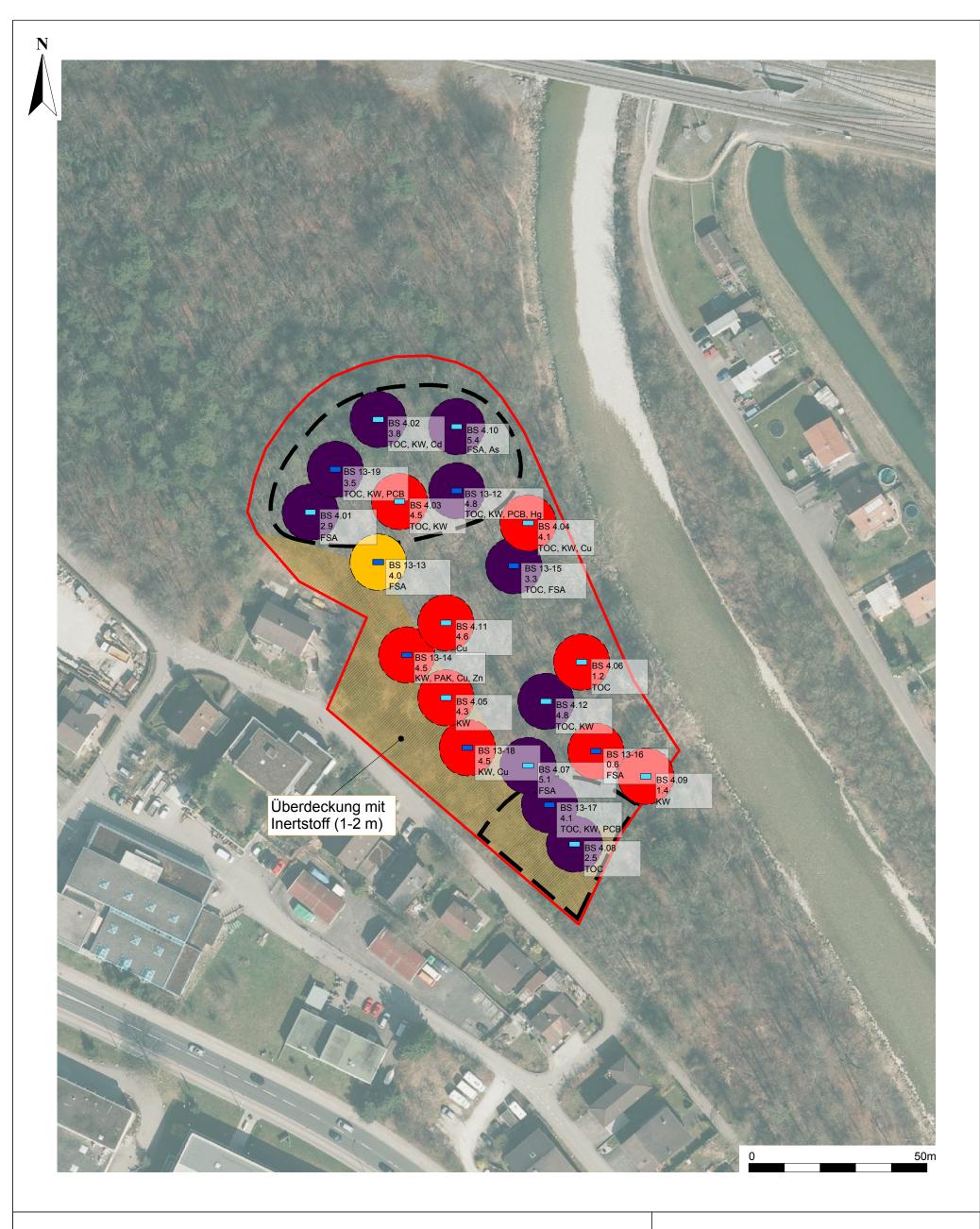
Standortperimeter

Baggerschlitz SolGeo AG (2011)

Baggerschlitz FRIEDLIPARTNER AG (2013)

Baggerschlitzbezeichnung Schichtmächtigkeit Deckschicht in [m] Klassierung relevante Parameter

Abfallkategorie nach TVA


Schadstoffgehalt > Grenzwert IS und ≤ Grenzwert RK Schadstoffgehalt > Grenzwert RK und ≤ Grenzwert RS Schadstoffgehalt > Grenzwert RK und RS

FRIEDLIPARTNER AG

GEOTECHNIK ALTLASTEN UMWELT

Sanierungsprojekt inkl. **Entsorgungskonzept (Bauprojekt)**

HWS und Revitalisierung Emme Kehrichtdeponie Rüti Zuchwil

Belastungsplan Deponiematerial 1:1'000

Format: A3 Plangrundlage: SO-GIS, Orthophoto

Standortperimeter Baggerschlitz SolGeo AG (2011)

Baggerschlitz FRIEDLIPARTNER AG (2013)

Baggerschlitzbezeichnung Schichtmächtigkeit Deponiegut/Auffüllung in [m] Klassierung relevante Parameter

erhöhter Methangehalt in Porenluft (> 3%) Solgeo AG (2011)

Abfallkategorie nach TVA

keine Klassierung
Fremdstoffanteil > Richtwert U AHR und ≤ Richtwert U KVU Ost
Fremdstoffanteil > Richtwert U KVU Ost und ≤ Richtwert T KVU Ost oder
Schadstoffgehalt > Grenzwert U und ≤ Richtwert T
Schadstoffgehalt > Richtwert T und ≤ Grenzwert IS

Schadstoffgehalt > Grenzwert IS und ≤ Grenzwert RK
Schadstoffgehalt > Grenzwert RK und ≤ Grenzwert RS
Schadstoffgehalt > Grenzwert RK und RS

FRIEDLIPARTNER AG

GEOTECHNIK ALTLASTEN UMWELT

Sanierungsprojekt inkl. Entsorgungskonzept (Bauprojekt)

HWS und Revitalisierung Emme Kehrichtdeponie Rüti Zuchwil

Hochwasserschutz und Revitalisierung Emme Solothurn, Wehr Biberist bis Aare Sanierungsprojekt Deponie Rüti

Anhang 3

A_{3.1}: Analysenergebnisse und Abfallkategorien

A_{3.2}: Ergebnisse Materialsortierung

ndierung/ Datum x	у Т	iefe Kote	geologische Identifikation B	eschreibung	Art und Menge der Fremdstoffe	FSA total	FKA*, geschätzt rot: Siebkurve	GKA*, geschätzt rot: Siebkurve	GKA (rechnische	Wasser- I gehalt	Rohdichte Schätzung	Klass. or- ganoleptisch	Klass. chemisch	Abfall- kategorie	Klassierungsrelev ante Parameter	Bemerkung	Schadstoffe	fe												
lone -	[r	n] [müM]			[Gew%]		[Gew%]	[Gew%	Gesamtanteil	aus Trocken- rückstand		ganoicpiscii	CHEMISCH	nach TVA	ante i arameter		KW	PAK] Arsen	Antimon	Blei Ca			Kupfer	Nickel	Quecksilber	Zink PC	в тос	Chro
							* von min. Anteil	* von min. Anteil		TOURSIANO							C ₁₀ -C ₄₀ mg/kg TS		rs pyren mg/kg Ts		mg/kg TS	mg/kg m	g/kg TS	gesamt mg/kg TS	mg/kg TS	mg/kg TS	mg/kg TS	mg/kg (inc	or	(VI mg/kg
eponie Rüti																														
4.01 28.06.11 61 4.01-1	10452 227902 0		Waldboden			0	-		0			U	Kat. I	U		Untersuchung FP 12 (HMB 12-		(0.6 0.05	5		32	0.3		25			73 0.0	114	
4.01-2 4.01-3		.0 434.5 .9 431.6	Deckschicht Deponiematerial		15-40 % min. BA, Ziegel, Beton	0	-	<15	8	0.23		U > RK	- RK	? > RK	FSA	10.2)	4600	16.	27 1 2	4 1	0 < BG	180	1	120	290	65	< BG	410 0.	39'000	\vdash
					10 % Metall 10 % Glas 15-20 % Holz 15 % Plastik, Knäuel von					0.20		~ · · · · ·		- 1.1.1			.000					.55		.25	250	5.0	150		350	
4.01-4 4.02 28.06.11 61	10471 227928	.1 431.4 434.7	Emmeschotter		Plastikbändern	0	<30	50.0	50			U	-	?																F
4.02-1	0	.2 434.5	Waldboden			0						U	Kat. I	U		Untersuchung FP 12 (HMB 12- 10.2)		(0.6 0.05	5		32	0.3	-	25			73 0.0	114	
4.02-2 4.02-3		.8 433.9 .6 430.1	Deckschicht Deponiematerial		5 % Plastik 15-20 % Holz	70	<15	50.0	15	0.34		> RK	> RK	? > RK	TOC, KW, Cd		17000	26.	.28 1.4	4 2	12	600	45	180	1100	250	< BG	1200 3.	913 74'000	_
					10 % min. BA, Ziegel, Beton Damenstrümpfe, Ledersohlen etc	:-																								
4.03 28.06.11 61 4.03-1	10477 227905 0	.2 435.5 .2 435.5	Waldboden			0			C			U	Kat. I	U		Untersuchung FP 12 (HMB 12- 10.2)		-	0.6 0.05	5		32	0.3		25			73 0.0	114	
4.03-2 4.03-3		.0 434.7 .0 430.7	Deckschicht Deponiematerial		1-2 % Plastik 10 % Holz	50	15.0 <15	<30 50.0		0.11 0.18		U RK	U RK	RK	TOC, KW		2600	< E 10.	BG < BG .06 0.71		6 < BG 0 7	34 410	< BG 2.8	30 53	28 270	29 37	< BG < BG		< BG 0.55 26'000	<
	10513 227899				15 % min. BA, Ziegel, Beton, 2 grosse Betonblöcke																									
4.04-1		.2 435.1	Waldboden			0			C			U	Kat. I	U		Untersuchung FP 12 (HMB 12- 10.2)			0.6 0.05	5	_	32	0.3		25			73 0.0	114	
4.04-3		.0 434.3	Deckschicht Deponiematerial		10 % Plastik	100	<15	30.0	30	0.23		n n	T	T	TOC, KW, Cu	Untersuchung FP 12 (HMB 12- 10.2/0.3-0.5)	1500	17.	1.8 0.18	8 3 1	1 < BG	180	2.1	80	40.4	84	1	74 830 0.	636 26'000	<
		100.2			5 % Holz 20-30 % min. BA 5 % Glas 20-30 % Metall Schamottsteine in Fass					0.20			, ac		100,1111,00		.000							55		σ.		5.5	20000	
4.04-4 4.05 28.06.11 61 4.05-1	10490 227850 0	.3 430.0 435.7 .2 435.5	Emmeschotter Waldboden			0	0.0	100.0	100			U	- Kat. II	?		Untersuchung FP 12 (HMB 12-			0.9 0.08	R		29	0.3		22			76 0.0	206	
			Deckschicht			0	15.0	<30	15	[] []		U	-	?		10.3)		· ·	0.00				0.0					70 0.0		\vdash
4.05-2 4.05-3	1	.8 433.9	Deckschicht		< 1 % Fremdkomponente, 2 Betonquader (in 1 m Tiefe)	<1	<15	50.0	50	0 040		U KVU-Ost	RK	RK	KW		830		.54 0.06		6 < BG		1	39	170	45	< BG			
4.05-4-1	3	.9 431.8	Deponiematerial		5 % min. BA, Betonblock in 3 m Tiefe 1 % Holz <1 % Metall	10	<30	<30	14	0.13		15	KK	KK	KW		830	/.	.54 0.06		6 < BG	85	1	39	170	45	< BG	160 0.	456 2'000	<
4.04-4-2 4.05-5		.9 430.8	Deponiematerial ev. Emmeschotter		15 % min. BA 5-10 % Holz	25	<30	<30 100.0		0.13		RK U	RK -	RK ?	KW		830	7.	.54 0.06	6 (6 < BG	85	1	39	170	45	< BG	160 0.	456 2'000	<
	10528 227860 0	435.1 .2 434.9	Waldboden			0						U	Kat. II	Т		Untersuchung FP 12 (HMB 12- 10.3)		(0.9 0.08	В		29	0.3		22			76 0.0	206	
4.06-2 4.06-3		.5 434.6 .7 433.4	Deckschicht Deponiematerial		5 % Glas 10 % Metall < 5 % Plastik	20	<30 ?	30.0 25.0		0.09		U RK	- RK	? RK	TOC		360	1.	.72 0.16	6 9	9 < BG	100	5	47	180	50	< BG	270	31'000	<
4.06-4 4.06-5	3	.1 432.0	Emmeschotter Emmeschotter		wenig Holz, Knochen		<15 <15	0.0 50-70				U	-	?																二
4.07 28.06.11 61 4.07-1	10513 227831					0	<15	50-70	60	,		U	Kat. II	T		Untersuchung FP 12 (HMB 12-			1.5 0.14	4		47	0.4		34			181	-	=
4.07-2	1	.1 434.3	Deponiematerial		10 % Plastik 10 % Glas 5-10 % Metall 15 % min. BA	45	<15	50-70	33	0.14		RK	RK	RK	KW, Pb	10.1)	530	2.	.22 0.23	3 1:	2 < BG	510	6.2	68	290	91	< BG	490 0.	796 20'000	<
4.07-3	4	.8 430.6	Deponiematerial		Stofffetzen, Knochen, 1 Batterie 15-20 % min. BA, Beton, Ziegel,	65	<30	50.0	18	0.14		> RK	RK	> RK	FSA		2300	54.	.22 3.4	4 9	9 < BG	210	1.3	53	160	74	< BG	350 0.	284 25'000	<
					Backstein 15-25 % Holz 10 % Glas, Keramik etc.																									
4.08 28.06.11 61 4.08-1	10526 227809	435.0 .2 434.8	Waldboden		5-10 % Plastik	0						U	Kat. II	Т		Untersuchung FP 12 (HMB 12-			1.5 0.14	4		47	0.4		34			181		
4.08-2			Deckschicht		wenig min. BA wenig Glas	< 5	<15	50.0	49			Т	-	Т	FSA	10.1) aufgrund organoleptischem Befund														\vdash
4.08-3	4	.7 430.3	Deponiematerial		wering Glas 10-20 % min. BA 15 % Holz 20 % Metall <= 5 % Plastik Dosen, Schuhe, leeres Metallfass	60	<15	50.0	20	0.30		RK	> RK	> RK	TOC	Belund	1700	8.	.87 0.51	1 1	7 35	190	1.8	57	1000	29	0.9	820	58'000	<
	10546 227828	434.9				0	<15	<50	25	5		U		?																E
4.09-1 4.09-2	0	.2 434.7 .4 434.5	Waldboden Deckschicht			0	<30	30.0				U	Kat. II	?		Untersuchung FP 12 (HMB 12- 10.1)			1.5 0.14	4		47	0.4		34			181		
4.09-4	1	.8 433.1	Deponiematerial		5 % Plastik 5-10 % Metall	15	<15	50.0		0.13		RK U	ŘK -	RK ?	KW		800	9.	44 1	1	7 < BG	310	1.2	65	200	40	0.6	400	< BG	<
4.09-5 4.10 28.06.11 61	10493 227926	435.2				0	<5	<5 100.0	100			U	Val. 1	?		Hatermahur - FD 40 2 1 1 2 1			0.6			25						70 0	144	E
4.10-1 4.10-2		.2 435.0	Waldboden Deckschicht			0	15.0	30.0	20			U	Kat. I	?		Untersuchung FP 12 (HMB 12- 10.2)		1	0.6 0.05	5 T		32	0.3	-	25	-		73 0.0	114	<u> </u>
4.10-2	1	.5 433.7	Deponiematerial		10-15 % Metall 5-10 % Holz 1-5 % Plastik	30	15.0	50.0		0.12		RK	IS	RK	FSA		500		5.9 0.69	9	7 < BG	84	0.8	54	110	35	0.5	520	20'000	<
4.10-4	5	.3 429.9	Deponiematerial		Leder 10-15 % Plastik 20 % Metall	40	<15	<50	15	0.20		> RK	> RK	> RK	As, FSA		820	1.	.12 0.05	5 7	1 8	690	5	130	800	91	0.5	1200	42'000	<

14.05.2014/lk

2/3

ondierung/ Datum >	y Tiefe	Kote	geologische Identifikation	Beschreibung	Art und Menge der Fremdstoffe	FSA total	FKA*, geschätzt rot: Siebkurve	GKA*, geschätzt rot: Siebkurve	GKA (rechnischer	Wasser- Ro		Klass. or- ganoleptisch		Abfall-	Klassierungsrelev ante Parameter	Bemerkung	Schadstoffe	9												
licht	[m] [i	[müM]			[Gew%]		[Gew%]	[Gew%	Gesamtanteil)	aus Trocken- [k		ganoiepiisch		nach TVA	ante Parameter		KW	PAK	Benzo[a]	Arsen	Antimon	Blei C	admium	Chrom	Kupfer	Nickel C	Quecksilber Z	Zink PCB	тос	Ch
							* von min. Anteil	* von min. Anteil		rückstand							C ₁₀ -C ₄₀ mg/kg TS	mg/kg TS	pyren mg/kg TS	mg/kg TS	mg/kg TS	mg/kg n	ng/kg TS	gesamt mg/kg TS	mg/kg TS	mg/kg TS	mg/kg TS m	mg/kg (incl. TS Faktor		mg/
11 28.06.11 6 11-1	610490 227871 4 0.2 4	435.9 435.7	Waldboden			0						U	Kat. II	Т		Untersuchung FP 12 (HMB 12-		0.9	0.08			29	0.3		22			76 0.020		F
11-2	0.7 4 2.5 4		Deckschicht Deponiematerial		5 % min. BA	0	<30 <30	30.0 50.0		0.12		U IS	- RK	? RK	Cu	10.3)	410	8.74	0.51	7	< BG	140	< BG	66	560	47	< BG	420 0.18	85 < BG	F
					3 % Holz lokal wenig Metall, Keramik,							-															1		_	
11-4	4.8 4	431.1	Deponiematerial		Blechdosen 1-3 % min. BA, Ziegel, Beton <1 % Metall	5	<30	50.0	48	0.12		IS	RK	RK	Cu		410	8.74	0.51	7	< BG	140	< BG	66	560	47	< BG	420 0.18	85 < BG	╁
	610518 227849				1-2 % Holz																					<u> </u>				\vdash
.12-1	0.2 4	435.8	Waldboden Deckschicht			0	<30	50.0	50			U	Kat. II	Т		Untersuchung FP 12 (HMB 12- 10.3)		0.9	0.08			29	0.3		22			76 0.020	<mark>/6</mark>	
4.12-2 4.12-3			Deponiematerial		10 % Plastik 5-10 % Holz	60	?	100.0		0.31		> RK	> RK	> RK	TOC, KW		6900	13.07	0.5	30	18	580	8.7	260	630	180	1.4	2700 4	53'000	Г
					10-15 % Glas 20 % Asche Leder, Stoff-Fetzen																									
13-12 20.11.13 6 13-12-1	610493 227908 4	435.5 435.3	Waldboden	siltiger, toniger Sand mit wenig Kies	0	0						U	U	U		Untersuchung FP 12 (HMB 12-		0.6	0.05			32	0.3		25			73 0.011	14	
3-12-2	0.9 4		Deckschicht	siltiger Sand mit wenig Steinen und Kies,	< 1% Plastik	<3	20.0	10-15	1			U KVU-Ost	Т	Т		10.2) Untersuchung FP 12 (HMB 12-		1.8	0.18			38	0.3		40.4	$\overline{}$	$\overline{}$	74	$\overline{}$	Т
13-12-3	4.8 4	430.7	Deponiematerial	0.5-0.9 kompakte Schicht siltig toniger Sand mit wenig Kies	< 2% min. BA 10 % min. BA 15 % Holz	50	22.4	52.9	26	0.18 1.	6-1.8	> RK	RS	> RK	Hg, KW, TOC, PCB	10.2/0.3-0.5)	1200	6.57	0.43	14	< BG	220	2.2	42	280	170	6.7	770 2.1	9 48'000	
				starker Öl- und Modergeruch, gasig, Farbe schwarz	20 % Plastik 10 % Metall																									
12.42.4		420.0	Denoniem of	FS-Anteil 0.9-2.5m ca. 70%, Dichte 1.5, ab 2.5m dichter, min. Anteil höher, erdfeucht	5 % Gummi	60	20.0	40.0			64.7	. אמ		. DV	ECA.															_
13-12-4	5.2	430.3	Deponiematerial	siltiger Sand mit reichlich Kies bei ca. 5m grosser Wurzelstock> ehem.	10 % min. BA 40 % Holz 1% Keramik/Glas	60	30.0	10.0	4	11	6/1.7	> RK	ľ	> RK	FSA															
	610471 227888 4 0.5 4		Maldhadas	Waldboden? -> UK Deponie?			00.0						I/-i I			Listanos ED 40 (UND 40										\pm				Ł
3-13-1		435.2	Waldboden	siltig toniger Sand mit wenig Kies	0	0	30.0	0.0				U	Kat. I	U		Untersuchung FP 12 (HMB 12- 10.2)		0.6				32	0.3		25			73 0.011	4	
3-13-2	1.5	434.2	Deckschicht	siltiger Sand mit wenig Kies und Steinen	5 % min. BA < 1 % Holz < 2 % Plastik < 3 % Metalle	5-10%	37.7	33.4	31	0.15 1.	8	IS	IS	IS	Cu, Hg		140	0.33	< BG	9	< BG	150	0.8	53	300	36	1.2	300		
3-13-3	5.0 4	430.7	Deponiematerial	siltig toniger Sand mit wenig Kies und Steinen	< 1% Glas/Keramik 5 % min. BA < 3 % Holz	5-10%	30.0	10-15	12	0.18 1.	8/1.9	IS	Т	IS	FSA		72	5.7	0.46	7	< BG	24	< BG	35	25	30	< BG	79 < B	3G 6'000	
				Fremdstoff gut verteilt in feinkörniger Matrix	< 1 % Metalle																									
				1.5 - 2m z.T. Nester mit 50 % FS	< 3 % Schwarzbelag < 2 % Textilien, Leder																									
13-14 21.11.13 6	610479 227862 4	435.6 435.1	Waldboden mit	siltig toniger Sand mit wenig Kies und	< 3 % Brandschutt	0		< 30	15			U	Kat. II	Т		Untersuchung FP 12 (HMB 12-		0.9	0.08			29	0.3		22		$=\pm$	76 0.020	06	Ħ
3-14-2	1.2 4		Unterboden Deponiematerial	organischen Beimengungen siltiger Sand mit viel Kies und Steinen,	5 - 10% min. BA	10	31.4	40.8				IS	IS	IS	KW, PAK	10.3)	340	10.54	0.21	4	< BG	27	< BG	33	34	25	< BG	72	+	Т
3-14-3	1.9 4	133 7	Deponiematerial	braungrau siltiger Sand mit wenig Kies und Steinen	< 3 % Schwarzbelag < 1 % Keramik/Glas 20 % min. BA	30	17.7	54.8	38	0.13 1.	6	DV	DK	DK	KW, PAK		740	27.5	2.3	7	< BG	44	< BG	27	86	26	< BG	100 0.64	45 4'000	_
		100.1	Deponionational	braun-grau-schwarz, feiner Brandschutt	5 % Metalle < 3 % Keramik/Glas			01.0		0.10 1.	Ĭ				,.,.,.		7 10		2.0		150		150		88	23	150	100		
13-14-4	2.6 4	433.0	fluv. Sand ?	siltiger Sand	5-10 % Brandschutt	0	> 30 %		0	1.	9	U	-	U		keine Belastungshinweise										-	-+		1	H
13-14-5	4.5	431.1	Deponiematerial	schräg abfallend in Profil siltiger Sand mit reichlich Kies und Steinen z.T öliger Geruch	< 1 % Plastik	2-5%	31.9	46.5	45	0.21 1.	7/1.8	IS	RK	RK	Cu, Zn		110	4.16	0.29	10	< BG	200	1.2	160	2400	53	< BG	1100 0.51	16 6'000	T
10.1.1.0	50	400.0	Description		< 1 % Metalle < 1 % Keramik/Glas	00.50						Div	DIK	DIC	010.7	Dub - D040 44/5h Oublish						-		200						┖
3-14-6	5.0 4	43U.b	Deponiematerial	siltiger Sand mit reichlich Kies und Steinen	10-20 % Schlacke 5% Keramik	20-50						KK.	> RK	> RK	Cd, Cu, Zn	= Probe: BS13-14/5b, Schlacke	290	0.95	0.07	36	12	2300	7.9	300	36000	190	0.6	15000 1.27	3 43'000	
3-14-7 13-15 20.11.13 6	610509 227887 4	435.5	Emmeschotter ???									U		?												$\equiv \pm$	=			Ε
13-15-1	0.2		Waldboden									U	Kat. II	Т		Untersuchung FP 12 (HMB 12- 10.3)		0.9				29	0.3		22			76 0.020	16	
3-15-2	0.4 4		Unterboden	siltiger Sand mit wenig Kies	< 1% min. BA	< 1	< 20	< 10				U KVU-Ost	Т	Т		Untersuchung FP 12 (HMB 12- 10.2/0.3-0.5)		1.8	0.18			38	0.3		40.4			74		
3-15-3 3-15-4	1.1 4	434.4	Deckschicht Deponiematerial	siltiger Kies mit viel Sand siltig toniger Sand mit wenig org. Beimengungen und Kies	< 3 % min. BA 5 % min. BA 5 % Holz	< 3% 60	20.0	60.0 56.7		0.34 1.	5-1.7	V KVU-Ost > RK	> RK	> RK	FSA, TOC		2000	10.31	0.49	18	15	570	1.4	54	290	38	< BG	750 0.33	31 106'000	Г
				ölig, gasig, schwarz	20 % Metall 10-20% Plastik																								/	
					10-20 % Keramik/Glas < 3 % Leder < 3 % Asche																								/	
3-15-5			Auffüllung	toniqer Sil mit viel Sand	Brandschutt	0	> 30		0	2		U	-	?																L
3-15-6	4.0	431.5	Auffüllung	siltiger Sand mit viel Kies und Steinen, braungrau	2-5 % min. BA < 2 % Holz < 1 % Keramik/Glas	5	33.3	33.0	31	0.17 1.	8/1.9	IS	IS	IS	KW, FSA		260	0.21	< BG	7	< BG	36	< BG	35	29	30	< BG	110 0.18	89 4'000	
				modrig, grau 4-4.5m sauberer Sand, <1 % FS, beige	< 2 % Metalle																									
3-15-7 3-16 21.11.13 6	310532 227835		Emmeschotter	sauberer Sand		< 1 %	20-30	< 5	2			U	-	?												\Longrightarrow				E
3-16-1	0.2 4		Waldboden	siltiger Sand mit wenig Kies		0	30.0					U	Kat. II	1		Untersuchung FP 12 (HMB 12- 10.1)		1.5	0.14			47	0.4		34			181 < B	G .	
3-16-2	0.4 4	435.4	Deckschicht	siltiger Sand mit reichlich Kies	< 3 % min. BA < 2 % Metalle < 1 % Plastik	2-5	20.0	10-15	12			IS	-	?																
3-16-3	1.0 4	434.8	Deponiematerial	siltiger Sand mit wenig Kies und org. Beimengungen	< 3 % min. BA 5-10 % Metalle	15-20	31.7	21.0	17	0.16		RK	IS	RK	FSA		160	1.09	0.14	8	< BG	190	1.1	31	270	30	< BG	380 0.86	64 20'000	
				grosses Metallstück	5-10 % Plastik < 1 % Keramik/Glas																						<u> </u>			
13-16-4		132 E	flux Sand	ciltiner Sand mit wasia Kisa	5 % Strümpfe < 3 % Knochen	0	< 30	- 40	_	\vdash			11	11			< BG		< BG	-	< BG	10	< BG	24	44	22	- 00	28	4	\vdash
	1 [3.2]4	→ 34.0	fluv. Sand	siltiger Sand mit wenig Kies	i .	ľ	< 30	< 10	, 5					10		i .									11	22	< BG	20	1	1

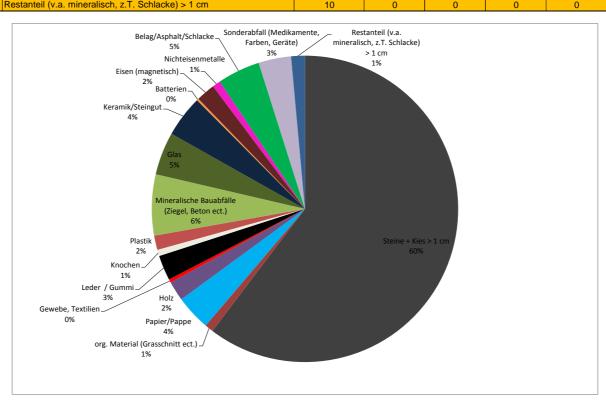
icht	ľ		Kote	geologische Identifikation		Art und Menge der Fremdstoffe	FSA total	rot: Siebkurve	GKA*, geschätzt rot: Siebkurve	(rechnischer	gehalt		Klass. or- ganoleptisch	Klass. chemisch	kategorie	Klassierungsrelev ante Parameter	Bemerkung	Schadstoffe												
		[m]	[müM]			[Gew%]	[Gew%]	[Gew%] * von min. Anteil	[Gew%	Gesamtanteil) [Gew%]	aus Trocken- rückstand	[kg/dm3)			nach TVA			KW C ₁₀ -C ₄₀	PAK mg/kg TS	Benzo[a]	Arsen mg/kg TS	Antimon mg/kg TS	Blei C	admium	Chrom K	Supfer Nic	kel Quecksi	ilber Zink	PCB (incl.	TOC mg/kg
								VOIT TIME. 7 GROOM	voii iimi. y u iton									mg/kg TS	ilig/kg 10	mg/kg TS	mg/kg TS	ilig/kg 10	TS	ilg/kg 10	mg/kg TS	mg/kg mg/kg	g TS mg/kg 1	TS	Faktor	ilig/kg
13-17 22.11.13 (10519 2278			Waldboden									U	Kat. II	Т		Untersuchung FP 12 (HMB 12-		1.5	0.14			47	0.4		34		181	1 < BG	
13-17-2		0.5	434.7	Deckschicht	siltiger Sand mit reichlich Steinen und Kies	< 1 % min. BA	< 1	15-30	15-20	17			U	-	2		10.1)												4	
					optisch U-Material, braun																									
13-17-3		1.1	434.1	Deponiematerial		4-5 % min. BA < 1 % Plastik	5-10	42.6	29.1	27	0.19	1.9	IS	> RK	> RK	PCB		150		< BG	11	< BG	190	1.3	62	840	84	0.5 520	17.16	14'000
					braun, Aushubmaterial mit wenig FS (n.a. Strümpfe 1 Volumen%)	< 1 % Keramik/Glas Strümpfe																								
13-17-4		4.6	430.6	Deponiematerial	verbrannt, EC analysieren, Farbe schwarz	10 % Metalle 2 % Plastik 5 % Keramik/Glas 10 % Putzfäden 5 % Schlacke	90-100	16.8	53.8	3	0.20		> RK	> RK	> RK	TOC, KW, PCB		32000	14.6	0.62	20	24	1900	28	310	2200	1900	0.9 1600	460	138'000
13-17-5		4.7	430.5	Emmeschotter	Kies mit reichlich Steinen und Sand	50-60 % Asche		8					U	RK	RK	PCB		56		< BG	5	< BG	13	< BG	13	37 < E	BG < BG	G 41	2.197	1000
13-18 22.11.13 (10496 2278	20	435.6		grau																					$-\!\!\!\!\!+\!\!\!\!\!\!\!\!-$		\perp		
13-18-1	10496 2276		435.3	Waldboden									U	Kat. II	Т		Untersuchung FP 12 (HMB 12- 10.3)		0.9	0.08	-		29	0.3	I	22		76	0.0206	
13-18-2		0.8	434.8	Deckschicht	siltiger Sand mit reichlich Kies und Steinen	< 1 % min. BA	< 1	15-30					U	U	U		10.0,	< BG		< BG	6	< BG	19	0.3	36	36	37 <	< BG 60	1	
					braun, U-Material optisch																						\perp		$\perp \perp \downarrow$	
13-18-3		2.4	433.2	Deponiematerial	siltig toniger Sand mit reichlich Kies und Steinen braun, Aushubmaterial mit FS 3-5%	2-3 % min. BA 1 % Keramik/Glas 1 % Asphalt	3-5	25-30	10-20	14	0.14		Т	Т	Т	FSA, KW		63	0.7	0.07	4	< BG	19	< BG	24	23 2	2 < BG	G 50		3000
13-18-4		5.1	430.5	Deponiematerial	siltig toniger Sand mit wenig Kies und	3-4 % min. BA 3-5 % Holz	15-20	25.8	47.5	39	0.17		RK	RK	RK	KW		1100	6.29	0.58	5	< BG	75	0.5	39	58	39 -	< BG 78	3 < BG	12'000
					chemisch organisch, grau star siltiger stark toniger Fein-Mittelsand mit wenig Kies, erdfeucht, ab 4.5m deutlich mehr Holz	2 % Plastik 3 % Metalle																								ı
13-18-5		5.3	430.3	Deponiematerial	stechender chemischer Geruch siltiger Sand mit wenig Kies und Steinen	50 % Schlacke	50-60	30-40	10.0	5	0.18		RK	RK	RK	KW, Cu		1900	0.12	< BG	16	< BG	300	5.6	250	2400	250 <	< BG 310	, 	
					Schlacke schwarz - blau, Schicht, braun Schlackeschicht mit brauner Matrix				10.0		0.10					, 55		1000	0.12	130		130	555	5.5	200	1.00	200	130 0.0		
13-18-6		5.6	430.0	?	nicht ersichtlich, ob Deponie fertg, z.T. relativ sauberes Aushubmaterial, z.T								Т	-	?															1
13-19 21.11.13	10459 2279				vermischt mit Bauschutt																					\pm		+		
13-19-1		0.2	434.7	Waldboden			0	> 30					U	U	U		Untersuchung FP 12 (HMB 12- 10.2)		0.6	0.05			32	0.3		25		73	3 0.0114	
13-19-2 13-19-3				Deckschicht Deponiematerial	siltiger Sand mit wenig Kies und Steinen,	10 % min. BA	< 1 30	> 30 31.3	< 15 46.0	7 32	0.20	1.9 1.6-1.7	U RK	- RK	? RK	TOC, KW, PCB		2600	3.68	0.35	12	< BG	110	1.7	54	220	52	< BG 240	3.285	26'000
					braun rostig	5 % Holz 5 % Metalle 5 % Keramik/Glas < 3 % Strümpfe Dosen, Flaschen, Metallstück																								
13-19-4		4.0	431.6	Deponiematerial	chemisch gelagert, z.T. grosse Metallstücke schwarz-grau	10 % min. BA 10 % Holz 10 % Metalle 5-10 % Plastik 10-20 % Keramik/Glas 5-10 % GummWStrümpfe 20 % Brandschutt	70-80	22.4	52.8	13	0.25	1.5-1.6	> RK	> RK	> RK	TOC, KW, PCB		15000	19.98	1.3	20	< BG	260	5.4	190	800	600 <	< BG 560	21.638	52'000
13-19-5		4.5	431.1	Emmeschotter	siltiger Kies mit reichlich Sand		0	10.0	50.0	50	0.07	1.9	U	RK	RK	KW, Cu, Zn, PCB		1900	0.08	< BG	8	< BG	270	1.9	140	4600	43 <	< BG 1800	2.214	
oniematerial MIN										0.00	0.12							160	1.1	0.05	5	7	44	0.5	27	58	26	0.5 78	0.19	2'000
oniematerial MAX										47.50								32000	54.2	3.40	71	35	1900	28.0	310	2200	1900	6.7 2700		
oniematerial Mittelwe	t	_								23.44								4363 1350	12.5	0.80	15	17	200	4.6 2.0	91 56	482 285	181 51	0.9 45	2 27.89	40'200 28'500
oniematerial STABW	_	+						 		13.11								7630	11.9	0.81	14	10	399	6.5	77	486	404	2.2 601	1 107.95	34'400
nzwert U htwert U AHR																		50	3	0.3	15	2	50	1	50	40	50	0.5 150	0.1	
htwert U KVU Ost htwert T																		250	15	1	40	15	250	5	250	250	250	1 500	0 0.1	
nzwert IS nzwert RK																		500	25	3 10	30 50	30	500 2'000	10 10	500 1'000	500	500 1'000	2 1000 5 5'000	1	
																		5'000 500	25	3			2 000	.0				1 300	1	20'000
nzwert RS																								T I						

KW: Kohlenwasserstoffe
PAK: Polycyclische aromatische KV
PCB: Polychlorierte Biphenyle

CC: Dissolved Organic Carbon
EX: Monocyclische aromatische KW
A: Feinkomanteil (Ton+Silt) vom mineralische

SA: Feinkornanteii (Ton+Siit) vom mineraliscr SA: Kies+Steine vom mineralischen Anteil

T < 1 % übriqes FS


min. BA, Metall, Glas, Keramik >5 %, max.15 % org. FS (Plastik, Holz, Asche...) Herleitung: Grenze 5 Gew-% TOC, Überschätzung Anteil wegen geringer Dichte (Faktor 1.5-2), Anteil C an Organik ca. 50 % Fremdstoffantel > Richtwert U AHR und < Richtwert U KVU Ost Fremdstoffantel > Richtwert U KVU Ost und < Richtwert T Schadstoffgehalt > Grenzwert U und < Richtwert T Schadstoffgehalt > Richtwert T und < Grenzwert IS Schadstoffgehalt > Genzwert iS und < Gernzwert RK

14.05.2014 / lk

Anhang 3.2

Materialsortierung HWS Emme, Zusatzuntersuchungen 2013, Deponie Rüti

Probe	Probe (20 L Eimer)		BS 13-12/3	BS 13-14/3	BS 13-16/3	BS13-15/4	BS 13-19/4	BS 13-17/4	BS 13-18/4	Min	Max	Median	Durchschnitt	STD
			Anteil [%]	Anteil [%]										
Anteil an Gesamt feucht	Wassergehalt vor Trocknung (nicht komplett ausgetrocknet!)		16	11	15	30	20	17	12	11	30	16	17	6
Anteil an Gesamt feucht	Steine + Kies > 1 cm		11	18	16	18	18	16	29	11	29	18	18	5
Anteil an Gesamt trocken	Gesamt		100	100	100	100	100	100	100	100	100	100	100	0
	Feingut < 1 cm		70	76	77	63	54	63	68	54	77	68	67	8
	Grobfraktion > 1 cm		31	28	27	45	51	42	35	27	51	35	37	9
	Fremdstoffanteil (aussortiert > 1 cm)		18	8	9	19	29	23	2	2	29	18	15	10
	Steine + Kies > 1 cm		13	20	18	26	22	19	33	13	33	20	22	6
Anteil an Grobfraktion	Steine + Kies > 1 cm		43	72	68	58	43	46	94	43	94	58	60	19
	Fremdstoffanteil total		57	28	32	42	57	54	6	6	57	42	40	19
		org. Material (Grasschnitt ect.)	2	0	0	0	5	0	0	0	5	0	1	2
		Papier/Pappe	4	0	0	4	13	4	0	0	13	4	4	5
		Holz	3	0.1	0.1	2	7	2	1	0	7	2	2	2
		Gewebe, Textilien	0	0	0	0	0	3	0	0	3	0	0	1
		Leder / Gummi	1	0	0	11	6	0	0	0	11	0	3	4
		Knochen	0	0	0	3	0.1	2	0	0	3	0	1	1
		Plastik	1	0	4	2	3	1	0	0	4	1	2	1
		Mineralische Bauabfälle (Ziegel, Beton ect.)	12	14	11	4	4	0	0	0	14	4	6	6
		Glas	15	0	3	4	5	4	0	0	15	4	5	5
		Keramik/Steingut	1	14	2	1	2	10	1	1	14	2	4	5
		Batterien	0	0	0	0	0	1	0	0	1	0	0	1
		Eisen (magnetisch)	2	0.3	3	2	5	0	1	0	5	2	2	2
		Nichteisenmetalle	2	0.0	0.5	0	0	3	0	0	3	0	1	1
		Belag/Asphalt/Schlacke	4	0.3	8	9	8	0	3	0	9	4	5	4
		Sonderabfall (Medikamente, Farben, Geräte)	0	0	0	0	0	24	0	0	24	0	3	9
		Restanteil (v.a. mineralisch, z.T. Schlacke) > 1 cm	10	0	0	0	0	0	0	0	10	0	1	4

Hochwasserschutz und Revitalisierung Emme Solothurn, Wehr Biberist bis Aare Sanierungsprojekt Deponie Rüti

Anhang 4

Entsorgungskategorien und -mengen

Sondierung/	OKT	Tiefe		und Meng	Art und Menge der	FSA	FKA*, geschätzt	Klass. or-	Klass.	Abfall-	Leitparameter	Bemerkung	Entsorgungs-	Fläche	Kubatur
Schicht				Identifikation	Fremdstoffe	total	rot: Siebkurve	ganoleptisch	chemisch	kategorie			kategorie		Joanul
	[müM]	[m]	[müM]		[Gew%]	[Gew%]	[Gew%] * von min. Anteil			nach TVA				m2	[m3 fest]
3S 4.01	435.5														
SS 4.01-1		0.2		Waldboden		0	-	U	Kat. I	U		Untersuchung FP 12 (HMB 12-10.2)	OB Kat. I	516	103
3S 4.01-2 3S 4.01-3		3.9	434.5 431.6	Deckschicht Deponiematerial	15-40 % min. BA, Ziegel, Beton 10 % Metall 10 % Glas	100	< 30	V > RK	- RK	T > RK	Cu FSA	analog BS13-12-3	T3 >RK3a	<u>516</u> 516	413 1497
					15-20 % Holz 15 % Plastik, Knäuel von										
3S 4.01-4		4.1	431.4	Emmeschotter	Plastikbändern	0	<30	U	-	?			13	516	103
3S 4.02 3S 4.02-1	434.7	0.2	434.5	Waldboden		0		U	Kat. I	U		Untersuchung FP 12	OB Kat. I	608	122
S 4.02-2		0.8		Deckschicht		0		U	-	Т	Cu	(HMB 12-10.2) analog BS13-12-3	T3	608	365
S 4.02-3		5.0	429.7	Deponiematerial	5 % Plastik 15-20 % Holz 10 % min. BA, Ziegel, Beton Damenstrümpfe, Ledersohlen etc.	70	<15	> RK	> RK	> RK	TOC, KW, Cd		>RK2b	608	2555
S 4.02-4	435.7	5.3		Emmeschotter?	Esdereemen etc.					?		Annahme	RK2b	608	182
S 4.03-1	400.7	0.2	435.5	Waldboden		0		U	Kat. I	U		Untersuchung FP 12 (HMB 12-10.2)	OB Kat. I	583	117
3S 4.03-2 3S 4.03-3		1.0 5.2		Deckschicht Deponiematerial	1-2 % Plastik 10 % Holz 15 % min. BA, Ziegel, Beton, 2 grosse	50	15.0 <15	U RK	U RK	U RK	TOC, KW	(HIVIS 12*10.2)	U RK2b	583 583	466 2449
S 4.03-4		5.5		Emmeschotter?	Betonblöcke					?		Annahme	12	583	175
3S 4.04 3S 4.04-1	435.3	0.2	435.1	Waldboden		0		П	Kot I	U		Untergueleus ED (2)	OP Vat 1	500	400
						0	-15	U	Kat. I	T	Cu	Untersuchung FP 12 (HMB 12-10.2) Untersuchung FP 12	OB Kat. I	598	120
3S 4.04-2		1.0	434.3	Deckschicht		3	<15				Cu	(HMB 12-10.2/0.3- 0.5)	T2	598	479
3S 4.04-3		5.1	430.2	Deponiematerial	10 % Plastik 5 % Holz 20-30 % min. BA 5 % Glas 20-30 % Metall Schamottsteine in Fass	100	-	RK	RK	RK	TOC, KW, Cu	0.5)	RK3b	598	2454
3S 4.04-4 3S 4.05	435.7	5.3	430.0	Emmeschotter		0	-	U	-	?			12	598	180
3S 4.05-1	433.7	0.2	435.5	Waldboden		0		U	Kat. II	Т		Untersuchung FP 12 (HMB 12-10.3)	OB Kat. II	499	100
S 4.05-2		0.6	435.1	Deckschicht	.4.0/	0	15.0	U	-	U	IOM	analog BS 13-18-2	U	499	200
SS 4.05-3		1.8		Deckschicht	< 1 % Fremdkomponente, 2 Betonquader (in 1 m Tiefe)	<1	<15	U KVU-Ost	RK	RK	KW		RK2b	499	599
3S 4.05-4-1		3.9		Deponiematerial	5 % min. BA, Betonblock in 3 m Tiefe 1 % Holz <1 % Metall		<30	IS	RK	RK	KW		RK3b	499	1049
3S 4.04-4-2		4.9		Deponiematerial	15 % min. BA 5-10 % Holz	25	<30	RK	RK	RK	KW		RK3b	499	499
S 4.05-5		5.1	430.6	ev. Emmeschotter		0	0.0	U	-	?			l2	499	100
SS 4.06-1	435.1	0.2	434.9	Waldboden		0		U	Kat. II	Т		Untersuchung FP 12	OB Kat. II	513	103
S 4.06-2		0.5	434.6	Deckschicht		0	<30	U	-	Т		(HMB 12-10.3) konservative	T3	513	154
3S 4.06-3		1.7	433.4	Deponiematerial	5 % Glas 10 % Metall < 5 % Plastik	20	< 30	RK	RK	RK	TOC	Annahme	RK3a	513	616
3S 4.06-4		3.1		Emmeschotter	wenig Holz, Knochen	0	<15	U	-	?			12	513	103
3S 4.06-5 3S 4.07	435.4	3.2	431.9	Emmeschotter		0	<15	U	-	U				513	0
3S 4.07-1 3S 4.07-2		1.1		Waldboden Deponiematerial	10 % Plastik 10 % Glas 5-10 % Metall 15 % min. BA Stofffetzen, Knochen, 1 Batterie	45	<15	U RK	RK	RK	KW, Pb	Untersuchung FP 12 (HMB 12-10.1)	OB Kat. II RK2b	503	553
3S 4.07-3		5.0	430.4	Deponiematerial	15-20 % min. BA, Beton, Ziegel, Backstein 15-25 % Holz 10 % Glas, Keramik etc. 5-10 % Plastik	65	<30	> RK	RK	> RK	FSA		>RK3a	503	1861
3S 4.07-4		5.3		Emmeschotter?						?		Annahme	12	503	151
S 4.08	435.0	0.2	434.8	Waldboden		0		U	Kat. II	Т		Untersuchung FP 12	OB Kat. II	614	123
3S 4.08-2		2.2	432.8	Deckschicht	wenig min. BA wenig Glas	< 5	<15	Т	-	?		(HMB 12-10.1) Klassierung gemäss Organoleptik	T2	614	1229
S 4.08-3		4.7	430.3	Deponiematerial	10-20 % min. BA 15 % Holz 20 % Metall <= 5 % Plastik Dosen, Schuhe, leeres Metallfass	60	<15	RK	> RK	> RK	тос		>RK2b	614	1536
3S 4.08-4 3S 4.09	434.9	4.8	430.2	Emmeschotter		0	<15	U	-	?			RK2b	614	184
SS 4.09-1	104.9	0.2	434.7	Waldboden		0		U	Kat. II	Т		Untersuchung FP 12 (HMB 12-10.1)	OB Kat. II	356	71
3S 4.09-2		0.4	434.5	Deckschicht		0	<30	U	-	?		konservative Annahme	Т3	356	71
S 4.09-3		1.8	433.1	Deponiematerial	5 % Plastik 5-10 % Metall	15	<15	RK	RK	RK	KW	Aimaimie	RK2b	356	498
3S 4.09-4 3S 4.09-5		2.4		Emmeschotter Emmeschotter		0	<5 <5	U	-	? U			12	356 356	71 0
3S 4.10	435.2								West 1			Hate-web 1 = 2	65.11	356	
3S 4.10-1		0.2		Waldboden Deckschicht		0	15.0	U	Kat. I	U	Cu	Untersuchung FP 12 (HMB 12-10.2) analog BS13-12-3	OB Kat. I	566	113
3S 4.10-2 3S 4.10-3		1.5		Deponiematerial	10-15 % Metall 5-10 % Holz 1-5 % Plastik	30	15.0	RK	IS	RK	Cu FSA	andivy DO13-12-3	T2 RK2a	566 566	622
					Leder										

15.05.2014/lk 1/3

		ıngsk	ate	gorier	n und Meng	en				<u></u>	<u></u>	<u> </u>		<u> </u>		
### St.411		OKT	Tiefe			Art und Menge der Fremdstoffe	FSA total	FKA*, geschätzt rot: Siebkurve	Klass. or- ganoleptisch	Klass. chemisch	Abfall- kategorie	Leitparameter	Bemerkung	Entsorgungs- kategorie	Fläche	Kubatur
\$\$ 4.11-1		[müM]	[m]	[müM]		[Gew%]	[Gew%]	[Gew%] * von min. Anteil			nach TVA			-	m2	[m3 fest]
Section Sect	11	435.9						70111111117111011								
SS 4.11-3							0		U	Kat. II	Т		Untersuchung FP 12 (HMB 12-10.3)	OB Kat. II	568	114
Refamile, Refa						5 % min. BA 3 % Holz lokal wenig Metall,	10	<30 <30	U IS	- RK	IS RK	Cu	analog BS13-14-2	I3 RK3b	568 568	284 1023
12 % Hotel 12 % Hotel 12 % Hotel 12 % Hotel 13	1-4		5.0	430.9	Deponiematerial	Keramik, Blechdosen 1-3 % min. BA, Ziegel, Beton	5	<30	IS	RK	RK	Cu		RK3b	568	1421
88 4.12 436.0 0.2 435.8 Waldboden 88 4.12.1 0.8 435.2 Deckschicht 88 4.12.2 0.8 435.2 Deckschicht 88 4.12.3 5.2 430.8 Deponiematerial 10 % Pile 5-10 % Pile 1-15 % Pile 5-10 % Pile 5-10 % Pile 1-15 % Pile 5-10 % Pile 1-15 % Pi	1-5		5.3		Emmeschotter?	1-2 % Holz					?		Annahme	l2	568	170
Section Sect		436.0									-			12		
SS 4.12-3							0		U	Kat. II	Т		Untersuchung FP 12 (HMB 12-10.3)	OB Kat. II	587	117
September Sept							0	<30	U	-	Т		konservative Annahme	Т3	587	352
BS 13-12 435.5 Naldboden 0 BS 13-12-1 0.2 435.3 Waldboden 0 BS 13-12-2 0.9 434.6 Deckschicht < 1% Pia				430.8	·	10 % Plastik 5-10 % Holz 10-15 % Glas 20 % Asche Leder, Stoff-Fetzen	60	?	> RK	> RK	> RK	TOC, KW		>RK4	587	2585
BS 13-12-2	-12	435.5	5.5		Emmeschotter?						?		Annahme	RK2b	587	176
SS 13-12-3							0		U	U	U		Untersuchung FP 12 (HMB 12-10.2)	OB Kat. I	295	59
S 13-12-4						< 1% Plastik < 2% min. BA	<3	20.0	U KVU-Ost	Т	Т	Cu	Untersuchung FP 12 (HMB 12-10.2/0.3- 0.5)	Т3	295	207
S 13-12-4	-12-3		4.8	430.7	Deponiematerial	10 % min. BA 15 % Holz 20 % Plastik 10 % Metall 15 % Keramik/Glas	50	22.4	> RK	RS	> RK	Hg, KW, TOC, PCB		>RK3b	295	1152
BS 13-13-1	-12-4		5.3	430.2	Deponiematerial	10 % min. BA 40 % Holz 1% Keramik/Glas	60	30.0	> RK	-	> RK	FSA		>RK3b	295	148
BS 13-13-1		425.7	5.6		Emmeschotter?						?		Annahme	RK2b	295	89
S S S S S S S S S S		+35./	0.5	435.2	Waldboden	0	0	30.0	U	Kat. I	U		Untersuchung FP 12 (HMB 12-10.2)	OB Kat. I	528	264
BS 13-13-3	-13-2		1.5	434.2	Deckschicht	5 % min. BA < 1 % Holz < 2 % Plastik < 3 % Metalle < 1% Glas/Keramik	5-10%	37.7	IS	IS	IS	Cu, Hg	(HIVID 12-10.2)	14	528	528
BS 13-14	-13-3		5.0	430.7	Deponiematerial	5 % min. BA < 3 % Holz < 1 % Metalle < 3 % Glas < 3 % Schwarzbelag < 2 % Textilien, Leder < 3 % Brandschutt	5-10%	30.0	IS	Т	IS	FSA		13	528	1849
BS 13-14-1	-13-4		5.2		Emmeschotter?	< 5 % Bianuschutt					?		Annahme	12	528	106
BS 13-14-2 1.2 434.4 Deponiematerial 5 - 10% r 3 % Sc 1 % Ke 5 - 10 % r 5 % Metal 3 % Ke 5 - 10 % r 6 % Metal 2 - 5 % min. 5 % Metal 2 - 5 % min. 1 % Pic. 2 - 1 % Ke		435.6	0.5	435.1	Waldboden mit		0		U	Kat. II	Т		Untersuchung FP 12	OB Kat. II	552	276
S 13-14-3 1.9 433.7 Deponiematerial 2.0 % mir 5 % Mete 2.3 % Ke 5-10 % E S 13-14-5 4.5 431.1 Deponiematerial 2.5 % mir 1.9 % Ke 1.1 % Ke 1.1 % Ke 1.1 % Ke 1.1 % Ke 1.2 % Ke 1.3			0.0										(HMB 12-10.3)	OB Nat. II	332	210
S 13-14-4	-14-2		1.2	434.4	Deponiematerial	5 - 10% min. BA < 3 % Schwarzbelag < 1 % Keramik/Glas	10	31.4	IS	IS	IS	KW, PAK		14	552	386
BS 13-14-4 2.6 433.0 fluv. Sand ? BS 13-14-5 4.5 431.1 Deponiematerial 2.5 % mi	-14-3		1.9	433.7	Deponiematerial	20 % min. BA 5 % Metalle < 3 % Keramik/Glas 5-10 % Brandschutt	30	17.7	RK	RK	RK	KW, PAK		RK3b	552	386
S 13-14-6 5.0 430.6 Deponiematerial 20-30 % 10-20 % 5% Keral 20-30 % 10-20 % 20-30 % 20							0	> 30 %	U	-	U		keine Belastungshinweise	U	552	386
BS 13-14-6	-14-5		4.5	431.1	Deponiematerial	2-5 % min. BA < 1 % Plastik < 1 % Metalle < 1 % Keramik/Glas	2-5%	31.9	IS	RK	RK	Cu, Zn		RK4	552	1049
BS 13-15 435.5 430.1 Emmeschotter /??? BS 13-15 435.5 Waldboden BS 13-15-1 0.2 435.3 Waldboden BS 13-15-2 0.4 435.1 Unterboden < 1% mir	-14-6		5.0	430.6	Deponiematerial	20-30 % min. BA 10-20 % Schlacke 5% Keramik	20-50		RK	> RK	> RK	Cd, Cu, Zn	= Probe: BS13- 14/5b, Schlacke	>RK3b	552	276
BS 13-15-1	-14-7		5.5	430.1					U	-	?			RK2b	552	166
BS 13-15-3		435.5	0.2	435.3	Waldboden				U	Kat. II	Т		Untersuchung FP 12	OB Kat. II	599	120
BS 13-15-4						< 1% min. BA	< 1	< 20	U KVU-Ost	Т	Т		(HMB 12-10.3) Untersuchung FP 12	T3	599	120
BS 13-15-4 BS 13-15-4 BS 13-15-5 BS 13-15-6 BS 13-15-7 BS 13-16-1 BS 13-16-2 BS 13-16-3 BS 13-16-4 BS 13-17-4 BS 13-17-1 BS 13-17-1 BS 13-17-1 BS 13-17-1 BS 13-17-2 BS 13-17-1 BS 13-17-3 BS 13-17-3 BS 13-17-4 A-6 BS 13-17-4 A-6 BS 13-17-4 BS 13-17-5 BS 13-17-5 BS 13-17-6 BS 13-17-6 BS 13-17-7 BS 13-17-1 BS 13-17	-15-2		0.7	434 B	Deckschicht	< 3 % min. BA	< 3%		U KVU-Ost		2		(HMB 12-10.2/0.3- 0.5)	U	F00	190
BS 13-15-5 BS 13-15-6 4.0 431.5 Auffüllung 2-5 % mi < 2 % Ho < 1 % Ke < 2 % Me < 1 % Ke < 2 % Me BS 13-15-7 BS 13-16-1 BS 13-16-1 BS 13-16-2 0.4 435.4 Deckschicht 3 % mi 5-10 % N						5 % mini. BA 5 % Holz 20 % Metall 10-20% Plastik 10-20 % Keramik/Glas < 3 % Leder < 3 % Asche Brandschutt	60	20.0	> RK	> RK	> RK	FSA, TOC		>RK3b	599 599	180 240
S 13-15-7							0	> 30	U	-	Т		konservative Annahme	T4	599	839
BS 13-16 435.8 BS 13-16-1 0.2 435.7 Waldboden BS 13-16-2 0.4 435.4 Deckschicht < 3 % mi < 2 % Me < 1 % Pie	-15-6		4.0	431.5	Auffüllung	2-5 % min. BA < 2 % Holz < 1 % Keramik/Glas < 2 % Metalle	5	33.3	IS	IS	IS	KW, FSA		14	599	899
BS 13-16-1 0.2 435.7 Waldboden BS 13-16-2 0.4 435.4 Deckschicht < 3 % mi < 2 % Me < 1 % Ple < 1 % Ple < 1 % Fe < 1 % Ke 5 % Strün < 3 % Kri S 13-16-4 0.2 435.0 Waldboden BS 13-17-1 0.2 435.0 Waldboden BS 13-17-2 0.5 434.7 Deckschicht < 1 % mi < 1 % Ple < 1 % Fe		435.9	4.5	431.0	Emmeschotter		< 1 %	20-30	U	-	?			l2	599	120
C 2 % Mo	-	.00.0	0.2	435.7	Waldboden		0	30.0	U	Kat. II	Т		Untersuchung FP 12 (HMB 12-10.1)	OB Kat. II	475	71
BS 13-16-3 1.0 434.8 Deponiematerial 3 % mi 5-10 % N	-16-2		0.4	435.4	Deckschicht	< 3 % min. BA < 2 % Metalle	2-5	20.0	IS	-	?			13	475	119
BS 13-16-4 3.2 432.6 fluv. Sand BS 13-17 435.2 BS 13-17-1 0.2 435.0 Waldboden BS 13-17-2 0.5 434.7 Deckschicht < 1 % mi BS 13-17-3 1.1 434.1 Deponiematerial < 4-5 % mi	-16-3		1.0	434.8	Deponiematerial	< 3 % min. BA 5-10 % Metalle 5-10 % Plastik < 1 % Keramik/Glas 5 % Strümpfe	15-20	31.7	RK	IS	RK	FSA	FSA nur knapp > 30	RK3a	475	285
BS 13-17-1	-16-4		3.2	432.6	fluv. Sand	< 3 % Knochen	0	< 30	U	U	U			U	475	95
BS 13-17-2 0.5 434.7 Deckschicht < 1 % mi BS 13-17-3 1.1 434.1 Deponiematerial 4-5 % mi		435.2	0.2	435.0	Waldboden				U	Kat. II	Т		Untersuchung FP 12	OB Kat. II	430	86
BS 13-17-3						< 1 % min. BA	< 1	15-30	U	-	T		(HMB 12-10.1)	T3	430	129
						4-5 % min. BA	5-10	42.6	IS	> RK	> RK	PCB	Annahme	>RK4	430	258
2 % Plas					·	< 1 % Plastik < 1 % Keramik/Glas Strümpfe										
10 % Put 5 % Schl	-17-4		4.6	430.6	Deponiematerial	10 % Metalle 2 % Plastik 5 % Keramik/Glas 10 % Putzfäden 5 % Schlacke 50-60 % Asche	90-100	16.8	> RK	> RK	> RK	TOC, KW, PCB		>RK3b	430	1505
BS 13-17-5 4.7 430.5 Emmeschotter	-17-5		4.7	430.5	Emmeschotter	JU-UU /0 ASCITE		8	U	RK	RK	РСВ		RK2b	430	172

ondierung/	OKT	Tiefe		geologische	Art und Menge der	FSA	FKA*, geschätzt	Klass. or-	Klass.	Abfall-	Leitparameter	Bemerkung	Entsorgungs-	Fläche	Kubatur
chicht	0			Identifikation	Fremdstoffe	total	rot: Siebkurve	ganoleptisch	chemisch	kategorie	20.paramoto	Somethang	kategorie	1 140.10	rabatai
	[müM]	[m]	[müM]		[Gew%]	[Gew%]	[Gew%] * von min. Anteil			nach TVA				m2	[m3 fest]
13-18 13-18-1	435.6	0.3	435.3	Waldboden				U	Kat. II	Т		Untersuchung FP 12	OB Kat. II	375	112
13-18-2	-	0.8	434.8	Deckschicht	< 1 % min. BA	< 1	15-30	U	U	U		(HMB 12-10.3)	U	375	187
					,									0/0	107
3 13-18-3		2.4	433.2	Deponiematerial	2-3 % min. BA 1 % Keramik/Glas	3-5	25-30	Т	Т	Т	FSA, KW		Т3	375	599
					1 % Asphalt										
S 13-18-4		5.1	430.5	Deponiematerial	3-4 % min. BA 3-5 % Holz 2 % Plastik 3 % Metalle 2-3 % Keramik/Glas 2 % Schwarzbelag	15-20	25.8	RK	RK	RK	кw		RK3b	375	1012
S 13-18-5		5.3	430.3	Deponiematerial	50 % Schlacke	50-60	30-40	RK	RK	RK	KW, Cu		RK4	375	75
S 13-18-6		5.6	430.0	?				Т	-	?			13	375	112
S 13-19	434.9	0.2	434.7	Waldboden		0	> 30	U	U	U		Untersuchung FP 12	OB Kat. I	498	100
S 13-19-2		0.5	435.1	Deckschicht	< 1 % min. BA	< 1	> 30	U	-	т	Cu	(HMB 12-10.2) analog BS13-12-3	T4	498	149
S 13-19-3		1.0	434.6	Deponiematerial	10 % min. BA 5 % Holz 5 % Metalle 5 % Keramik/Glas < 3 % Strümpfe Dosen, Flaschen,	30	31.3	RK	RK	RK	TOC, KW, PCB	FSA nur knapp > 30	RK3b	498	249
S 13-19-4		4.0	431.6	Deponiematerial	10 % min. BA 10 % Holz 10 % Metalle 5-10 % Plastik 10-20 % Keramik/Glas 5-10 % Gummi/Strümpfe	70-80	22.4	> RK	> RK	> RK	TOC, KW, PCB		>RK3b	498	1495
2 40 40 5		4.5	404.4	F	20 % Brandschutt	0	40.0		DIC	DIV	KW C: 7- DCD		DIG	400	0.10
S 13-19-5		4.5	431.1	Emmeschotter		0	10.0	U	RK	RK	KW, Cu, Zn, PCB		RK2b	498	249
3 13-19-5		4.5	431.1	Emmeschotter		0	10.0		RK	RK	KW, Cu, Zn, PCB		RK2b Total	498 10266	249 48178
3 13-19-5		4.5	431.1	Emmeschotter		0	10.0	U Mengen [m3]	RK	RK	KW, Cu, Zn, PCB				
13-19-5		4.5	431.1	Emmeschotter		0				RK 997					48178
\$ 13-19-5		4.5	431.1	Emmeschotter		0	2391.1	Mengen [m3]					Total		
\$ 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3]		997			Total OB Kat. I		48178
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I		997 1394	3%		Total OB Kat. I		48178
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. U Total U/ U KVU		997 1394 1515	3%		Total OB Kat. I U		48178
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU		997 1394 1515 5220	3% 11%		Total OB Kat. I OB Kat. II U U KVU-Ost		48178
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I		997 1394 1515 5220 5456	3% 11% 12% 35%		Total OB Kat. I OB Kat. II U U KVU-Ost T2		48178
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total RK Total > RK		997 1394 1515 5220 5456 16227 17369	3% 11% 12% 35% 38%		Total OB Kat. I OB Kat. II U U KVU-Ost T2		48178 ! 1: 1:
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total RK Total > RK Oberboden		997 1394 1515 5220 5456 16227 17369	3% 11% 12% 35% 38%		Total OB Kat. II U U KVU-Ost T2 T3 T4		48178 1: 1: 1: 2:
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total RK Total > RK Oberboden Deckschicht	J-Ost	997 1394 1515 5220 5456 16227 17369	3% 11% 12% 35% 38%		Total OB Kat. I U U KVU-Ost T2 T3 T4		1: 1: 1: 2:
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVL Total T Total I Total RK Total > RK Oberboden Deckschicht Deponiemateri	J-Ost	997 1394 1515 5220 5456 16227 17369 2391 6225 36568	3% 11% 12% 35% 38%		Total OB Kat. II U U KVU-Ost T2 T3 T4 I2		11 11 2 2 1 1 2 2 1 1 2 1 1 2 1 1 1 1 2 1
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total RK Total > RK Oberboden Deckschicht Deponiemateri Emmeschotter	J-Ost	997 1394 1515 5220 5456 16227 17369 2391 6225 36568	3% 11% 12% 35% 38%		Total OB Kat. I U U KVU-Ost T2 T3 T4 I2 I3		1 1 1 2 1 2
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVL Total T Total I Total RK Total > RK Oberboden Deckschicht Deponiemateri	J-Ost	997 1394 1515 5220 5456 16227 17369 2391 6225 36568	3% 11% 12% 35% 38%		Total OB Kat. I U U KVU-Ost T2 T3 T4 I2 I3 I4 RK2a		1 1 1 2 1 2
13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total RK Total > RK Oberboden Deckschicht Deponiemateri Emmeschotter	J-Ost	997 1394 1515 5220 5456 16227 17369 2391 6225 36568	3% 11% 12% 35% 38%		Total OB Kat. II U KVU-Ost T2 T3 T4 I2 I3 I4 RK2a RK2b		1 1 1 2 1 2 1 5
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total RK Total > RK Oberboden Deckschicht Deponiemateri Emmeschotter Total Anteile Deponi	J-Ost	997 1394 1515 5220 5456 16227 17369 2391 6225 36568	3% 11% 12% 35% 38%		Total OB Kat. I OB Kat. II U KVU-Ost T2 T3 T4 I2 I3 I4 RK2a RK2b RK3a		1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total RK Total > RK Oberboden Deckschicht Deponiemateri Emmeschotter	J-Ost	997 1394 1515 5220 5456 16227 17369 2391 6225 36568	3% 11% 12% 35% 38%		Total OB Kat. I OB Kat. II U U KVU-Ost T2 T3 T4 I2 I3 I4 RK2a RK2b RK3a RK3b		1 1 1 2 1 2 1 5
3 13-19-5		4.5	431.1	Emmeschotter		0		Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total RK Total > RK Oberboden Deckschicht Deponiemateri Emmeschotter Total Anteile Deponi	J-Ost	997 1394 1515 5220 5456 16227 17369 2391 6225 36568 3010 48194	3% 11% 12% 35% 38%		Total OB Kat. I U U KVU-Ost T2 T3 T4 I2 I3 I4 RK2a RK2b RK3b RK4		1 1 1 2 1 2 1 5
13-19-5		4.5	431.1	Emmeschotter				Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total S RK Oberboden Deckschicht Deponiemateri Emmeschotter Total Anteile Deponi	J-Ost	997 1394 1515 5220 5456 16227 17369 2391 6225 36568 3010 48194 4959	3% 11% 12% 35% 38%		Total OB Kat. I OB Kat. II U U KVU-Ost T2 T3 T4 I2 I3 I4 RK2a RK2b RK3a RK3b RK4 >RK4		1 1 1 2 1 2 1 5 8 1
13-19-5		4.5	431.1	Emmeschotter				Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total RK Total > RK Oberboden Deckschicht Deponiemateri Emmeschotter Total Anteile Deponi IS/T/U RK >RK	J-Ost	997 1394 1515 5220 5456 16227 17369 2391 6225 36568 3010 48194 4959 14239 17369	3% 11% 12% 35% 38% 14% 39% 47%		Total OB Kat. I OB Kat. II U KVU-Ost T2 T3 T4 I2 I3 I4 RK2a RK2b RK3a RK3b RK4 >RK4 >RK2a >RK2a		1 1 1 2 1 2 1 5 8 1
13-19-5		4.5	431.1	Emmeschotter				Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total S RK Oberboden Deckschicht Deponiemateri Emmeschotter Total Anteile Deponi	J-Ost	997 1394 1515 5220 5456 16227 17369 2391 6225 36568 3010 48194 4959	3% 11% 12% 35% 38% 14% 39% 47%		Total OB Kat. I OB Kat. II U U KVU-Ost T2 T3 T4 I2 I3 I4 RK2a RK2b RK3a RK3b RK4 >RK2a >RK2b >RK3b >RK4		1 1 1 2 1 5 8 1 6 3 4
3 13-19-5		4.5	431.1	Emmeschotter				Mengen [m3] Total OB Kat. I Total OB Kat. I Total U/ U KVU Total T Total I Total RK Total > RK Oberboden Deckschicht Deponiemateri Emmeschotter Total Anteile Deponi IS/T/U RK >RK	J-Ost	997 1394 1515 5220 5456 16227 17369 2391 6225 36568 3010 48194 4959 14239 17369	3% 11% 12% 35% 38% 14% 39% 47%		Total OB Kat. I OB Kat. II U KVU-Ost T2 T3 T4 I2 I3 I4 RK2a RK2b RK3a RK3b RK4 >RK4 >RK2a >RK2a		1 1 1 2 1 2 1 5 8 1

KW: PAK: PCB: TOC: DOC: BTEX: Kohlenwasserstoffe Polycyclische aromatische KW Polychlorierte Biphenyle Total Organic Carbon
Dissolved Organic Carbon Monocyclische aromatische KW Feinkornanteil (Ton+Silt) vom mineralischen Anteil FSA: Kies+Steine vom mineralischen Anteil

Klassierung organol. U KVU Ost < 2 % min. BA, < 1% übrige FS

T IS

RK

< 5 % (min. BA)</p>
min. BA, Glas, Keramik, TOC < 20000, nicht-min. FS < 5 %</p>
min. BA, Metall, Glas, Keramik >5 %, max.15 % org. FS (Plastik, Holz, Asche..) Herleitung:
Grenze 5 Gew-% TOC, Überschätzung Anteil wegen geringer Dichte (Faktor 1.5-2), Anteil C an Organik ca. 50 %

belastete Schicht: 20 cm, bei Schadstoffgehalten >RK/RK -> 30 cm Wenn überliegend > RK -> RK; RK/IS -> IS (Schadstoffgehalte)

15.05.2014 / lk

Hochwasserschutz und Revitalisierung Emme Solothurn, Wehr Biberist bis Aare Sanierungsprojekt Deponie Rüti

Anhang 5

Fotodokumentation

BS13-13/3

BS13-13/3

BS13-13/3

Fotodokumentation

Zusatzuntersuchung 2013

FRIEDLIPARTNER AG

GEOTECHNIK ALTLASTEN UMWELT

HWS und Revitalisierung Emme Kehrichtdeponie Rüti Zuchwil

15.04.14/ms

12.119.1.08

BS13-14/5

BS13-14/4

BS13-14/6

Fotodokumentation

Zusatzuntersuchung 2013

FRIEDLIPARTNER AG

GEOTECHNIK ALTLASTEN UMWELT

HWS und Revitalisierung Emme Kehrichtdeponie Rüti Zuchwil

15.04.14/ms

12.119.1.08

BS13-17

Fotodokumentation

Zusatzuntersuchung 2013

FRIEDLIPARTNER AG

GEOTECHNIK ALTLASTEN UMWELT

HWS und Revitalisierung Emme Kehrichtdeponie Rüti Zuchwil

15.04.14/ms

12.119.1.08

Hochwasserschutz und Revitalisierung Emme Solothurn, Wehr Biberist bis Aare Sanierungsprojekt Deponie Rüti

Anhang 6

A6.1 Reststoff inkl. TVA-Eluate

A6.2 Wassergehalt / Körnung

A6.3 elementarer Kohlenstoff

A6.4 Feinfraktionen

Hochwasserschutz und Revitalisierung Emme Solothurn, Wehr Biberist bis Aare Sanierungsprojekt Deponie Rüti

Anhang 6.1

Reststoff inkl. TVA-Eluate

SGS Institut Fresenius GmbH Hauptstrasse 174 CH-5742 Kölliken

Friedlipartner AG Geotechnik Altlasten Umwelt Nansenstr. 5 8050 ZÜRICH SCHWEIZ Prüfbericht 2029984 Auftrags Nr. 2797115 Kunden Nr. 10074212

Herr Dr. Lutz Zabel Telefon 0041 6273838-64 Fax 0041 6273838-78

Environmental Services

SGS Institut Fresenius GmbH Betriebsstätte Kölliken Hauptstrasse 174 CH-5742 Kölliken DAKKS

Deutsche
Akkreditierungsstell
D-PL-14115-12-00

Kölliken, den 06.02.2014

Ihr Auftrag/Projekt: HWS Emme Ihr Bestellzeichen: 315.201.014 Ihr Bestelldatum: 07.11.2013

HWS Emme, Zusatzuntersuchungen Kehrichtdeponie 2013/14

Prüfzeitraum von 25.11.2013 bis 13.01.2014 erste laufende Probenummer 131076421 Probeneingang am 19.11.2013

SGS Institut/Fresenius

Dr. Lutz Zabel Leiter Standort Maren Schwalm Laborleitung

HWS Emme 315.201.014

Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seite 2 von 15 06.02.2014

Proben durch IF-Kurier abgeholt

Matrix: Feststoff

Probennummer

131076421

131076426

131076427

Bezeichnung

BS 13-12 /3

BS 13-13 /2

BS 13-13 /3 HWS Emme: Rüti HWS Emme: Rüti HWS Emme: Rüti

Eingangsdatum:

19.11.2013

19.11.2013

19.11.2013

Parameter	Einheit				Bestimmun -grenze	gs Methode
Feststoffuntersuchunge	en :					
Trockensubstanz	Masse-%	81,7	84,8	81,6	0,1	DIN ISO 11465
TC	Masse-% TR	7,1	-	1,7	0,1	DIN EN 13137
TIC	Masse-% TR	2,3	.	1,1	0,1	DIN EN 13137
TOC	Masse-% TR	4,8		0,6	0,1	DIN EN 13137
Metalle im Feststoff :						
Antimon	mg/kg TR	< 5	< 5	< 5	5	DIN-EN-ISO 11885
Arsen	mg/kg TR	14	9	7	3	DIN EN ISO 11885
Blei	mg/kg TR	220	150	24	5	DIN EN ISO 11885
Cadmium	mg/kg TR	2,2	8,0	< 0,5	0,5	DIN EN ISO 11885
Chrom	mg/kg TR	42	53	35	5,0	DIN EN ISO 11885
Kobalt	mg/kg TR	18	10	10	5	DIN EN ISO 11885
Kupfer	mg/kg TR	280	300	25	5	DIN EN ISO 11885
Nickel	mg/kg TR	170	36	30	10	DIN EN ISO 11885
Quecksilber	mg/kg TR	6,7	1,2	< 0,1	0,1	DIN EN 1483
Zink	mg/kg TR	770	300	79	10	DIN EN ISO 11885
KW-Index C10-C40	mg/kg TR	1200	140	72	10	DIN EN 14039

HWS Emme 315.201.014

Prüfbericht Nr. 2029984 Auftrag Nr. 2797115 Seite 3 von 15 06.02.2014

Probennummer Bezeichnung 131076421 BS 13-12 /3 131076426 BS 13-13 /2 131076427 BS 13-13 /3

HWS Emme: Rüti HWS Emme: Rüti HWS Emme: Rüti

PAK (EPA) :						
Naphthalin	mg/kg TR	0,19	< 0.05	< 0.05	0,05	DIN ISO 18287
Acenaphthylen	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Acenaphthen	mg/kg TR	0,05	< 0,05	0,09	0,05	DIN ISO 18287
Fluoren	mg/kg TR	0,13	< 0,05	0.14	0,05	DIN ISO 18287
Phenanthren	mg/kg TR	0,70	< 0,05	0,59	0,05	DIN ISO 18287
Anthracen	mg/kg TR	0,19	< 0,05	0,22	0,05	DIN ISO 18287
Fluoranthen	mg/kg TR	1,2	0,11	1,0	0,05	DIN ISO 18287
Pyren	mg/kg TR	1,1	0,10	0,87	0,05	DIN ISO 18287
Benz(a)anthracen	mg/kg TR	0,61	< 0,05	0,68	0,05	DIN ISO 18287
Chrysen	mg/kg TR	0,56	0,06	0,50	0,05	DIN ISO 18287
Benzo(b)fluoranthen	mg/kg TR	0,70	0,06	0,64	0,05	DIN ISO 18287
Benzo(k)fluoranthen	mg/kg TR	0,25	< 0,05	0,18	0,05	DIN ISO 18287
Benzo(a)pyren	mg/kg TR	0,43	< 0,05	0,46	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen	mg/kg TR	0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Benzo(g,h,i)perylen	mg/kg TR	0,20	< 0,05	0,16	0,05	DIN ISO 18287
Indeno(1,2,3-c,d)pyren	mg/kg TR	0,21	< 0,05	0,17	0,05	DIN ISO 18287
Summe PAK nach EPA	mg/kg TR	6,57	0,33	5,70		DIN ISO 18287
PCB:		(1)				
PCB 28	mg/kg TR	0,012(1)	=	< 0,005	0,005	DIN 38414-20
PCB 52	mg/kg TR	0,059(1)		< 0,005	0,005	DIN 38414-20
PCB 101	mg/kg TR	0,11	-	< 0,005	0,005	DIN 38414-20
PCB 138	mg/kg TR	0,12	-	< 0,005	0,005	DIN 38414-20
PCB 153	mg/kg TR	0,13	-	< 0,005	0,005	DIN 38414-20
PCB 180	mg/kg TR	0,064	-	< 0,005	0,005	DIN 38414-20
Summe 6 PCB (DIN)	mg/kg TR	0,495(1)	-	2		DIN 38414-20
Summe 6 PCB (incl.	mg/kg TR	2,129(1)	=		0,08	
Faktor 4,3)						
(1) überlagert						
Metalle im Eluat :						
Blei	mg/l	0,045	-	<u> (40</u>	0,005	DIN EN ISO 11885
Kupfer	mg/l	0,032	-	-	0,005	DIN EN ISO 11885
Quecksilber	mg/l	< 0,0002	-	=	0,0002	DIN EN 1483
Zink	mg/l	1,7	-	-	0,01	DIN EN ISO 11885
					220-00 <u>4</u> -00000000	

HWS Emme 315.201.014 Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seile 4 von 15 06.02.2014

Proben durch IF-Kurier abgeholt

Matrix: Feststoff

Probennummer Bezeichnung

131076432 BS 13-14 /2 131076433 BS 13-14/3

131076435 BS 13-14 /5

HWS Emme: Rüti HWS Emme: Rüti HWS Emme: Rüti

Eingangsdatum:

19.11.2013

19.11.2013

19.11.2013

Parameter	Einheit				Bestimmun -grenze	gs Methode
Feststoffuntersuchun	gen :					
Trockensubstanz	Masse-%	86,3	87,2	79,4	0,1	DIN ISO 11465
TC	Masse-% TR	3-3	2,9	1,5	0,1	DIN EN 13137
TIC	Masse-% TR	3-1	2,5	0,9	0,1	DIN EN 13137
TOC	Masse-% TR	1=0	0,4	0,6	0,1	DIN EN 13137
Metalle im Feststoff :						
Antimon	mg/kg TR	< 5	< 5	< 5	5	DIN-EN-ISO 11885
Arsen	mg/kg TR	4	7	10	3	DIN EN ISO 11885
Blei	mg/kg TR	27	44	200	5	DIN EN ISO 11885
Cadmium	mg/kg TR	< 0,5	< 0,5	1,2	0,5	DIN EN ISO 11885
Chrom	mg/kg TR	33	27	160	5,0	DIN EN ISO 11885
Kobalt	mg/kg TR	9	10	13	5	DIN EN ISO 11885
Kupfer	mg/kg TR	34	86	2400	5	DIN EN ISO 11885
Nickel	mg/kg TR	25	26	53	10	DIN EN ISO 11885
Quecksilber	mg/kg TR	< 0,1	< 0,1	< 0,1	0,1	DIN EN 1483
Zink	mg/kg TR	72	100	1100	10	DIN EN ISO 11885
KW-Index C10-C40	mg/kg TR	340	740	110	10	DIN EN 14039

HWS Emme 315.201.014

Prüfbericht Nr. 2029984 Auftrag Nr. 2797115 Seite 5 von 15 06.02.2014

Probennummer Bezeichnung 131076432 BS 13-14 /2 131076433 BS 13-14/3 131076435 BS 13-14 /5

HWS Emme: Rüti HWS Emme: Rüti HWS Emme: Rüti

PAK (EPA) :						
Naphthalin	mg/kg TR	0,13	< 0,05	< 0,05	0,05	DIN ISO 18287
Acenaphthylen	mg/kg TR	0,09	0,27	0,05	0,05	DIN ISO 18287
Acenaphthen	mg/kg TR	0,24	0,17	< 0,05	0,05	DIN ISO 18287
Fluoren	mg/kg TR	1,2	0,52	0,19	0,05	DIN ISO 18287
Phenanthren	mg/kg TR	3,5	3,3	0,67	0,05	DIN ISO 18287
Anthracen	mg/kg TR	0,81	0,95	0,16	0,05	DIN ISO 18287
Fluoranthen	mg/kg TR	1,8	5,2	0,77	0,05	DIN ISO 18287
Pyren	mg/kg TR	1,2	4,3	0,58	0,05	DIN ISO 18287
Benz(a)anthracen	mg/kg TR	0,51	2,7	0,35	0,05	DIN ISO 18287
Chrysen	mg/kg TR	0,41	2,0	0,26	0,05	DIN ISO 18287
Benzo(b)fluoranthen	mg/kg TR	0,26	2,9	0,42	0,05	DIN ISO 18287
Benzo(k)fluoranthen	mg/kg TR	0,13	0,91	0,15	0,05	DIN ISO 18287
Benzo(a)pyren	mg/kg TR	0,21	2,3	0,29	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen	mg/kg TR	< 0,05	0,16	< 0,05	0,05	DIN ISO 18287
Benzo(g,h,i)perylen	mg/kg TR	< 0,05	0,91	0,14	0,05	DIN ISO 18287
Indeno(1,2,3-c,d)pyren	mg/kg TR	0,05	0,91	0,13	0,05	DIN ISO 18287
Summe PAK nach EPA	mg/kg TR	10,54	27,50	4,16		DIN ISO 18287
10000000						
PCB:						
PCB 28	mg/kg TR	-	< 0,005	< 0,005	0,005	DIN 38414-20
PCB 52	mg/kg TR	•	0,012	< 0,005	0,005	DIN 38414-20
PCB 101	mg/kg TR	-	0,028	0,028	0,005	DIN 38414-20
PCB 138	mg/kg TR	-	0,031	0,037	0,005	DIN 38414-20
PCB 153	mg/kg TR	-	0,049	0,044	0,005	DIN 38414-20
PCB 180	mg/kg TR	-	0,030	0,011	0,005	DIN 38414-20
Summe 6 PCB (DIN)	mg/kg TR		0,150	0,120		DIN 38414-20
Summe 6 PCB (incl. Faktor 4,3)	mg/kg TR		0,645	0,516	80,0	

HWS Emme 315.201.014

Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seite 6 von 15 06.02.2014

Proben durch IF-Kurier abgeholt

Matrix: Feststoff

Probennummer Bezeichnung

131076436 BS 13-14 /5b

131076440

131076442 BS 13-15/6

BS 13-15/4 HWS Emme: Rüti HWS Emme: Rüti HWS Emme: Rüti

Eingangsdatum:

19.11.2013

19.11.2013

19.11.2013

Parameter	Einheit				Bestimmung -grenze	s Methode
Feststoffuntersuchunge	en:					
Trockensubstanz	Masse-%	83,4	65,9	82,7	0,1	DIN ISO 11465
TC	Masse-% TR	6,7	12,4	1,0	0,1	DIN EN 13137
TIC	Masse-% TR	2,4	1,8	0,6	0,1	DIN EN 13137
TOC	Masse-% TR	4,3	10,6	0,4	0,1	DIN EN 13137
Metalle im Feststoff :						
Antimon	mg/kg TR	12	15	< 5	5	DIN-EN-ISO 11885
Arsen	mg/kg TR	36	18	7	3	DIN EN ISO 11885
Blei	mg/kg TR	2300	570	36	5	DIN EN ISO 11885
Cadmium	mg/kg TR	7,9	1,4	< 0,5	0,5	DIN EN ISO 11885
Chrom	mg/kg TR	300	54	35	5,0	DIN EN ISO 11885
Kobalt	mg/kg TR	67	16	9	5	DIN EN ISO 11885
Kupfer	mg/kg TR	36000	290	29	5	DIN EN ISO 11885
Nickel	mg/kg TR	190	38	30	10	DIN EN ISO 11885
Quecksilber	mg/kg TR	0,6	< 0,1	< 0,1	0,1	DIN EN 1483
Zink	mg/kg TR	15000	750	110	10	DIN EN ISO 11885
KW-Index C10-C40	mg/kg TR	290	2000	260	10	DIN EN 14039

HWS Emme 315.201.014

Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seite 7 von 15 06.02.2014

Probennummer Bezeichnung

131076436 BS 13-14 /5b BS 13-15/4

131076440

131076442 BS 13-15/6

		HWS Emme: R	üti HWS Emme: R	üti HWS Emme: Rüt	i	
PAK (EPA) :						
Naphthalin	mg/kg TR	< 0,05	0,40	< 0,05	0,05	DIN ISO 18287
Acenaphthylen	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Acenaphthen	mg/kg TR	< 0,05	0,61	< 0,05	0,05	DIN ISO 18287
Fluoren	mg/kg TR	< 0,05	0,77	< 0,05	0,05	DIN ISO 18287
Phenanthren	mg/kg TR	0,18	1,7	0,07	0,05	DIN ISO 18287
Anthracen	mg/kg TR	< 0,05	0,39	< 0,05	0,05	DIN ISO 18287
Fluoranthen	mg/kg TR	0,23	1,7	0,08	0,05	DIN ISO 18287
Pyren	mg/kg TR	0,19	1,3	0,06	0,05	DIN ISO 18287
Benz(a)anthracen	mg/kg TR	80,0	0,83	< 0,05	0,05	DIN ISO 18287
Chrysen	mg/kg TR	0,10	0,70	< 0,05	0,05	DIN ISO 18287
Benzo(b)fluoranthen	mg/kg TR	0,10	0,70	< 0,05	0,05	DIN ISO 18287
Benzo(k)fluoranthen	mg/kg TR	< 0,05	0,25	< 0,05	0,05	DIN ISO 18287
Benzo(a)pyren	mg/kg TR	0,07	0,49	< 0,05	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen	mg/kg TR	< 0,05	0,05	< 0,05	0,05	DIN ISO 18287
Benzo(g,h,i)perylen	mg/kg TR	< 0,05	0,20	< 0,05	0,05	DIN ISO 18287
Indeno(1,2,3-c,d)pyren	mg/kg TR	< 0,05	0,22	< 0,05	0,05	DIN ISO 18287
Summe PAK nach EPA	mg/kg TR	0,95	10,31	0,21		DIN ISO 18287
PCB:						
PCB 28	mg/kg TR	< 0,005	< 0,005	< 0,005	0,005	DIN 38414-20
PCB 52	mg/kg TR	< 0,005	< 0,005	0,010	0,005	DIN 38414-20
PCB 101	mg/kg TR	0,033	0,027	0,017	0,005	DIN 38414-20
PCB 138	mg/kg TR	0,077	0,015	0,008	0,005	DIN 38414-20
PCB 153	mg/kg TR	0,13	0,022	0,009	0,005	DIN 38414-20
PCB 180	mg/kg TR	0,056	0,013	< 0,005	0,005	DIN 38414-20
Summe 6 PCB (DIN)	mg/kg TR	0,296	0,077	0,044		DIN 38414-20
Summe 6 PCB (incl. Faktor 4,3)	mg/kg TR	1,273	0,331	0,189	0,08	

HWS Emme 315.201.014

Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seite 8 von 15 06.02.2014

Proben durch IF-Kurier abgeholt

Matrix: Feststoff

Probennummer Bezeichnung

131076445 BS 13-16/3 131076446

131076451 BS 13-17 /3

BS 13-16 /4

HWS Emme: Rüti HWS Emme: Rüti HWS Emme: Rüti

Eingangsdatum:

KW-Index C10-C40

mg/kg TR

160

19.11.2013

19.11.2013

19.11.2013

Parameter	Einheit				Bestimmun -grenze	gs Methode
Feststoffuntersuchung	en:					
Trockensubstanz	Masse-%	83,9	93,0	80,9	0,1	DIN ISO 11465
TC	Masse-% TR	4,4	-	2,2	0,1	DIN EN 13137
TIC	Masse-% TR	2,4	*:	0,8	0,1	DIN EN 13137
TOC	Masse-% TR	2,0	₩0	1,4	0,1	DIN EN 13137
Metalle im Feststoff :						
Antimon	mg/kg TR	< 5	< 5	< 5	5	DIN-EN-ISO 11885
Arsen	mg/kg TR	-	5	· ·	2	DIN EN ISO 11885
Arsen	mg/kg TR	8	-	11	3	DIN EN ISO 11885
Blei	mg/kg TR	1. The second second	10	-	2	DIN EN ISO 11885
Blei	mg/kg TR	190	-	190	5	DIN EN ISO 11885
Cadmium	mg/kg TR	-	< 0,2	•	0,2	DIN EN ISO 11885
Cadmium	mg/kg TR	1,1	-	1,3	0,5	DIN EN ISO 11885
Chrom	mg/kg TR	7 <u>11</u>	24	· ·	1	DIN EN ISO 11885
Chrom	mg/kg TR	31	-	62	5,0	DIN EN ISO 11885
Kobalt	mg/kg TR	14	-	13	5	DIN EN ISO 11885
Kupfer	mg/kg TR	-	11	-	1	DIN EN ISO 11885
Kupfer	mg/kg TR	270	-	840	5	DIN EN ISO 11885
Nickel	mg/kg TR	.=	22	-	1	DIN EN ISO 11885
Nickel	mg/kg TR	30	-	84	10	DIN EN ISO 11885
Quecksilber	mg/kg TR	-	< 0,1	-	0,1	DIN EN 1483
Quecksilber	mg/kg TR	< 0,1	÷	0,5	0,1	DIN EN 1483
Zink	mg/kg TR	-	28	n=1	1	DIN EN ISO 11885
Zink	mg/kg TR	380	=	520	10	DIN EN ISO 11885

< 10

150

10

DIN EN 14039

HWS Emme 315.201.014

Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seite 9 von 15 06.02.2014

Probennummer Bezeichnung

131076445 BS 13-16/3

131076446 BS 13-16 /4 131076451 BS 13-17 /3

		HWS Emme: Rüti	HWS Emme: Rüti	HWS Emme: Rüti		
PAK (EPA) :						
Naphthalin	mg/kg TR	< 0,05	-	< 0,05	0,05	DIN ISO 18287
Naphthalin	mg/kg TR		< 0.05	-	0,05	DIN ISO 18287
Acenaphthylen	mg/kg TR	< 0,05	< 0.05	< 0,05	0,05	DIN ISO 18287
Acenaphthen	mg/kg TR	< 0,05	< 0.05	< 0,05	0,05	DIN ISO 18287
Fluoren	mg/kg TR	-	< 0,05	-	0,05	DIN ISO 18287
Fluoren	mg/kg TR	< 0,05	-	< 0,05	0,05	DIN ISO 18287
Phenanthren	mg/kg TR	0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Anthracen	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Fluoranthen	mg/kg TR	0,16	< 0,05	< 0,05	0,05	DIN ISO 18287
Pyren	mg/kg TR	0,14	< 0,05	< 0,05	0,05	DIN ISO 18287
Benz(a)anthracen	mg/kg TR	0,13	< 0,05	< 0,05	0,05	DIN ISO 18287
Chrysen	mg/kg TR	0,10	< 0,05	< 0,05	0,05	DIN ISO 18287
Benzo(b)fluoranthen	mg/kg TR	0,17	< 0,05	< 0,05	0,05	DIN ISO 18287
Benzo(k)fluoranthen	mg/kg TR	0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Benzo(a)pyren	mg/kg TR	0,14	< 0,05	< 0,05	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Benzo(g,h,i)perylen	mg/kg TR	0,08	< 0,05	< 0,05	0,05	DIN ISO 18287
Indeno(1,2,3-c,d)pyren	mg/kg TR	0,07	< 0,05	< 0,05	0,05	DIN ISO 18287
Summe PAK nach EPA	mg/kg TR	1,09	-	-		DIN ISO 18287
PCB:	" TD					
PCB 28	mg/kg TR	0,019	-	< 0,005	0,005	DIN 38414-20
PCB 52	mg/kg TR	0,016	₩ Ø	0,15	0,005	DIN 38414-20
PCB 101	mg/kg TR	0,041	-	0,81	0,005	DIN 38414-20
PCB 138	mg/kg TR	0,045	-	1,1	0,005	DIN 38414-20
PCB 153	mg/kg TR	0,050	-	1,2	0,005	DIN 38414-20
PCB 180	mg/kg TR	0,030	-	0,73	0,005	DIN 38414-20
Summe 6 PCB (DIN)	mg/kg TR	0,201	-	3,99		DIN 38414-20
Summe 6 PCB (incl. Faktor 4,3)	mg/kg TR	0,864		17,16	0,08	

HWS Emme 315.201.014 Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seite 10 von 15 06.02.2014

Proben durch IF-Kurier abgeholt

Matrix: Feststoff

Probennummer Bezeichnung

131076452 BS 13-17 /4

131076453 BS 13-17 /5

131076456 BS 13-18 /2 HWS Emme: Rüti HWS Emme: Rüti HWS Emme: Rüti

Eingangsdatum:

KW-Index C10-C40

mg/kg TR

32000

19.11.2013

19.11.2013

19.11.2013

Parameter	Einheit				Bestimmur -grenze	ngs Methode
Feststoffuntersuchung	gen :					
Trockensubstanz	Masse-%	80,3	95,5	86,4	0,1	DIN ISO 11465
TC	Masse-% TR	16,0	3,1	9 2	0,1	DIN EN 13137
TIC	Masse-% TR	2,2	3,0	12	0,1	DIN EN 13137
TOC	Masse-% TR	13,8	0,1	-	0,1	DIN EN 13137
Metalle im Feststoff :						
Antimon	mg/kg TR	24	< 5	< 5	5	DIN-EN-ISO 11885
Arsen	mg/kg TR	·=	-	6	2	DIN EN ISO 11885
Arsen	mg/kg TR	20	5	12	3	DIN EN ISO 11885
Blei	mg/kg TR	-	-	19	2	DIN EN ISO 11885
Blei	mg/kg TR	1900	13	-	5	DIN EN ISO 11885
Cadmium	mg/kg TR	-	-	0,3	0,2	DIN EN ISO 11885
Cadmium	mg/kg TR	28	< 0,5	-	0,5	DIN EN ISO 11885
Chrom	mg/kg TR	.=.	•/	36	1	DIN EN ISO 11885
Chrom	mg/kg TR	310	13	-	5,0	DIN EN ISO 11885
Kobalt	mg/kg TR	110	8	-	5	DIN EN ISO 11885
Kupfer	mg/kg TR	-	==	36	1	DIN EN ISO 11885
Kupfer	mg/kg TR	2200	37	-	5	DIN EN ISO 11885
Nickel	mg/kg TR	-	-	37	1	DIN EN ISO 11885
Nickel	mg/kg TR	1900	< 10	· -	10	DIN EN ISO 11885
Quecksilber	mg/kg TR	-	-	< 0,1	0,1	DIN EN 1483
Quecksilber	mg/kg TR	0,9	< 0,1	8=	0,1	DIN EN 1483
Zink	mg/kg TR		-	60	1	DIN EN ISO 11885
Zink	mg/kg TR	1600	41	_	10	DIN EN ISO 11885
nadate s di se sessioni wi						

56

< 10

10

DIN EN 14039

HWS Emme 315.201.014

Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seite 11 von 15 06.02.2014

Probennummer Bezeichnung 131076452 BS 13-17 /4 131076453 BS 13-17 /5 131076456 BS 13-18 /2

BS 13-18 /2

HWS Emme: Rüti	HWS Emme: Rüti	HWS Emme: Rüti
----------------	----------------	----------------

PAK (EPA) : Naphthalin							
Naphthalin							
Naphthalin							
Naphthalin	PAK (EPA) :						
Acenaphthylen mg/kg TR 0,08 < 0,05 < 0,05	Naphthalin	mg/kg TR	2,0	< 0,05	•	0,05	DIN ISO 18287
Acenaphthen mg/kg TR 0,24 < 0,05 < 0,05	Naphthalin	mg/kg TR	-	•	< 0,05	0,05	DIN ISO 18287
Fluoren mg/kg TR < < 0,05	Acenaphthylen	mg/kg TR	0,08	< 0,05	< 0,05	0,05	DIN ISO 18287
Fluoren	***	mg/kg TR	0,24	< 0,05	< 0,05	0,05	DIN ISO 18287
Phenanthren	Fluoren	mg/kg TR	-	-	< 0,05	0,05	DIN ISO 18287
Anthracen mg/kg TR 0,40 < 0,05 < 0,05	Fluoren	mg/kg TR	0,47	< 0,05	<u> </u>	0,05	DIN ISO 18287
Fluoranthen	Phenanthren	mg/kg TR	2,5	< 0,05	< 0,05	0,05	DIN ISO 18287
Pyren	Anthracen	mg/kg TR	0,40	< 0,05	< 0,05	0,05	DIN ISO 18287
Benz(a)anthracen mg/kg TR 0,81 < 0,05 < 0,05	Fluoranthen	mg/kg TR	2,0	< 0,05	< 0,05	0,05	DIN ISO 18287
Chrysen mg/kg TR 1,6 < 0,05 < 0,05	Pyren	mg/kg TR	1,8	< 0,05	< 0,05	0,05	DIN ISO 18287
Benzo(b)fluoranthen mg/kg TR 1,1 < 0,05 < 0,05	Benz(a)anthracen	mg/kg TR	0,81	< 0,05	< 0,05	0,05	DIN ISO 18287
Benzo(k)fluoranthen mg/kg TR 0,29 < 0,05 < 0,05	Chrysen	mg/kg TR	1,6	< 0,05	< 0,05	0,05	DIN ISO 18287
Benzo(a)pyren mg/kg TR 0,62 <0,05 <0,05 0,05 DIN ISO 18287 Dibenzo(a,h)anthracen mg/kg TR 0,08 <0,05 <0,05 0,05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0,29 <0,05 <0,05 0,05 DIN ISO 18287 Indeno(1,2,3-c,d)pyren mg/kg TR 0,32 <0,05 <0,05 0,05 DIN ISO 18287 Summe PAK nach EPA mg/kg TR 14,60	Benzo(b)fluoranthen	mg/kg TR	1,1	< 0,05	< 0,05	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen mg/kg TR 0,08 < 0,05 < 0,05 0,05 DIN ISO 18287	Benzo(k)fluoranthen	mg/kg TR	0,29	< 0,05	< 0,05	0,05	DIN ISO 18287
Benzo(g,h,l)perylen mg/kg TR 0,29 < 0,05 < 0,05 0,05 0,05 DIN ISO 18287 Indeno(1,2,3-c,d)pyren mg/kg TR 0,32 < 0,05 < 0,05 0,05 DIN ISO 18287 Summe PAK nach EPA mg/kg TR 14,60 0,005 DIN ISO 18287 DIN ISO	Benzo(a)pyren	mg/kg TR	0,62	< 0,05	< 0,05	0,05	DIN ISO 18287
Benzo(g,h,i)perylen mg/kg TR 0,29 < 0,05 < 0,05	Dibenzo(a,h)anthracen	mg/kg TR	0,08	< 0,05	< 0,05	0,05	
Indeno(1,2,3-c,d)pyren mg/kg TR 0,32 < 0,05 < 0,05 0,05 DIN ISO 18287	Benzo(g,h,i)perylen	mg/kg TR	0,29	< 0,05	< 0,05		
PCB: PCB 28	Indeno(1,2,3-c,d)pyren	mg/kg TR	0,32	< 0,05	< 0,05	0,05	DIN ISO 18287
PCB 28 mg/kg TR < 0,005 < 0,005 - 0,005 DIN 38414-20 PCB 52 mg/kg TR 14 0,072 - 0,005 DIN 38414-20 PCB 101 mg/kg TR 26 0,12 - 0,005 DIN 38414-20 PCB 138 mg/kg TR 24 0,12 - 0,005 DIN 38414-20 PCB 153 mg/kg TR 27 0,13 - 0,005 DIN 38414-20 PCB 180 mg/kg TR 16 0,069 - 0,005 DIN 38414-20 Summe 6 PCB (DIN) mg/kg TR 107 0,511 - 0,005 DIN 38414-20 Summe 6 PCB (incl. mg/kg TR 460 2,197 - 0,08 Metalle im Eluat : Blei mg/l 0,010 - - 0,005 DIN EN ISO 11885 Cadmium mg/l 0,004 - - 0,004 DIN EN ISO 11885 Chrom VI mg/l 0,056 - - 0,005 <td>Summe PAK nach EPA</td> <td>mg/kg TR</td> <td>14,60</td> <td>-</td> <td>8-</td> <td></td> <td>DIN ISO 18287</td>	Summe PAK nach EPA	mg/kg TR	14,60	-	8-		DIN ISO 18287
PCB 28 mg/kg TR < 0,005 < 0,005 - 0,005 DIN 38414-20 PCB 52 mg/kg TR 14 0,072 - 0,005 DIN 38414-20 PCB 101 mg/kg TR 26 0,12 - 0,005 DIN 38414-20 PCB 138 mg/kg TR 24 0,12 - 0,005 DIN 38414-20 PCB 153 mg/kg TR 27 0,13 - 0,005 DIN 38414-20 PCB 180 mg/kg TR 16 0,069 - 0,005 DIN 38414-20 Summe 6 PCB (DIN) mg/kg TR 107 0,511 - 0,005 DIN 38414-20 Summe 6 PCB (incl. mg/kg TR 460 2,197 - 0,08 Metalle im Eluat : Blei mg/l 0,010 - - 0,005 DIN EN ISO 11885 Cadmium mg/l 0,004 - - 0,004 DIN EN ISO 11885 Chrom VI mg/l 0,056 - - 0,005 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
PCB 52							
PCB 101		mg/kg TR	< 0,005	< 0,005	z. -	0,005	DIN 38414-20
PCB 138		mg/kg TR	14	0,072	I. -	0,005	DIN 38414-20
PCB 153	PCB 101	mg/kg TR	26	0,12	-	0,005	DIN 38414-20
PCB 180		mg/kg TR	24	0,12	-	0,005	DIN 38414-20
Summe 6 PCB (DIN) mg/kg TR 107 0,511 - DIN 38414-20 Summe 6 PCB (incl. Faktor 4,3) mg/kg TR 460 2,197 - 0,08 Metalle im Eluat : Blei mg/l 0,010 - - 0,005 DIN EN ISO 11885 Cadmium mg/l 0,010 - - 0,001 DIN EN ISO 11885 Chrom VI mg/l <0,004	PCB 153		27	0,13	12	0,005	DIN 38414-20
Summe 6 PCB (incl. Faktor 4,3) mg/kg TR 460 2,197 - 0,08 Metalle im Eluat : Blei mg/l 0,010 - - 0,005 DIN EN ISO 11885 Cadmium mg/l 0,010 - - 0,001 DIN EN ISO 11885 Chrom VI mg/l <0,004	PCB 180	mg/kg TR	16	0,069	-	0,005	DIN 38414-20
Faktor 4,3) Metalle im Eluat : Blei mg/l 0,010 - - 0,005 DIN EN ISO 11885 Cadmium mg/l 0,010 - - 0,001 DIN EN ISO 11885 Chrom VI mg/l 0,004 - - 0,004 DIN 38405-24 Kupfer mg/l 0,056 - - 0,005 DIN EN ISO 11885 Nickel mg/l 0,43 - - 0,005 DIN EN ISO 11885 Ziele mg/l 4.0 - - 0,005 DIN EN ISO 11885	Summe 6 PCB (DIN)	mg/kg TR	107	0,511	-		DIN 38414-20
Metalle im Eluat : Blei mg/l 0,010 - - 0,005 DIN EN ISO 11885 Cadmium mg/l 0,010 - - 0,001 DIN EN ISO 11885 Chrom VI mg/l < 0,004		mg/kg TR	460	2,197	· *	0,08	
Blei mg/l 0,010 - - 0,005 DIN EN ISO 11885 Cadmium mg/l 0,010 - - 0,001 DIN EN ISO 11885 Chrom VI mg/l < 0,004 - - 0,004 DIN 38405-24 Kupfer mg/l 0,056 - - 0,005 DIN EN ISO 11885 Nickel mg/l 0,43 - - 0,005 DIN EN ISO 11885	Faktor 4,3)						
Blei mg/l 0,010 - - 0,005 DIN EN ISO 11885 Cadmium mg/l 0,010 - - 0,001 DIN EN ISO 11885 Chrom VI mg/l < 0,004 - - 0,004 DIN 38405-24 Kupfer mg/l 0,056 - - 0,005 DIN EN ISO 11885 Nickel mg/l 0,43 - - 0,005 DIN EN ISO 11885	Matalla im Eluat .						
Cadmium mg/l 0,010 0,001 DIN EN ISO 11885 Chrom VI mg/l < 0,004 0,004 DIN 38405-24 Kupfer mg/l 0,056 0,005 DIN EN ISO 11885 Nickel mg/l 0,43 0,005 DIN EN ISO 11885		/I	0.040				
Chrom VI mg/l < 0,004 0,004 DIN 38405-24 Kupfer mg/l 0,056 0,005 DIN EN ISO 11885 Nickel mg/l 0,43 0,005 DIN EN ISO 11885	ATTACON TO CONTROL OF THE CONTROL OF			-	()		
Kupfer mg/l 0,056 - - 0,005 DIN EN ISO 11885 Nickel mg/l 0,43 - - 0,005 DIN EN ISO 11885 Zink mg/l 1.0 1.0 1.0 1.0 1.0				=	-	AND	
Nickel mg/l 0,43 0,005 DIN EN ISO 11885	Total Mark	•	1,000	.	:-	AN 100 100 100 100	
7ink mg/l 4.0	Santan Value of	_	8. S.		-		DIN EN ISO 11885
2lrik mg/l 1,9 0,01 DIN EN ISO 11885				-	-	0,005	DIN EN ISO 11885
	∠u K	mg/i	1,9	-	-	0,01	DIN EN ISO 11885

HWS Emme 315.201.014

Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seite 12 von 15 06.02.2014

Proben durch IF-Kurier abgeholt

Matrix: Feststoff

Probennummer Bezeichnung

131076457 BS 13-18/3

131076458 BS 13-18 /4

131076459 BS 13-18 /5

HWS Emme: Rüti HWS Emme: Rüti HWS Emme: Rüti

Eingangsdatum:

19.11.2013

19.11.2013

19.11.2013

Parameter	Einheit				Bestimmun -grenze	gs Methode
Feststoffuntersuchung	gen:					
Trockensubstanz	Masse-%	86,4	83,4	81,6	0,1	DIN ISO 11465
TC	Masse-% TR	1,7	5,1	_	0,1	DIN EN 13137
TIC	Masse-% TR	1,4	3,9	-	0,1	DIN EN 13137
TOC	Masse-% TR	0,3	1,2	<u>**</u>	0,1	DIN EN 13137
Metalle im Feststoff :						
Antimon	mg/kg TR	< 5	< 5	< 5	5	DIN-EN-ISO 11885
Arsen	mg/kg TR	4	5	16	3	DIN EN ISO 11885
Blei	mg/kg TR	19	75	300	5	DIN EN ISO 11885
Cadmium	mg/kg TR	< 0,5	0,5	5,6	0,5	DIN EN ISO 11885
Chrom	mg/kg TR	24	39	250	5,0	DIN EN ISO 11885
Kobalt	mg/kg TR	8	16	330	5	DIN EN ISO 11885
Kupfer	mg/kg TR	23	58	2400	5	DIN EN ISO 11885
Nickel	mg/kg TR	22	39	250	10	DIN EN ISO 11885
Quecksilber	mg/kg TR	< 0,1	< 0,1	< 0,1	0,1	DIN EN 1483
Zink	mg/kg TR	50	78	310	10	DIN EN ISO 11885
KW-Index C10-C40	mg/kg TR	63	1100	1900	10	DIN EN 14039

HWS Emme 315.201.014 Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seite 13 von 15 06.02.2014

Probennummer Bezeichnung 131076457 BS 13-18 /3 131076458 BS 13-18 /4 131076459 BS 13-18 /5

PAK (EPA): Naphihalin mg/kg TR < 0.05 0.05 0.05 0.05 0.05 DIN ISO 18287 Acenaphthylen mg/kg TR < 0.05 0.09 0.00 0.05 DIN ISO 18287 Acenaphthylen mg/kg TR < 0.05 0.09 0.00 0.05 DIN ISO 18287 Fluoren mg/kg TR < 0.05 0.09 0.05 0.05 DIN ISO 18287 Fluoren mg/kg TR 0.08 0.62 0.05 0.05 DIN ISO 18287 Phenanthren mg/kg TR 0.08 0.62 0.05 0.05 DIN ISO 18287 Fluoranthen mg/kg TR 0.017 1.00 0.06 0.05 DIN ISO 18287 Fluoranthen mg/kg TR 0.17 1.00 0.06 0.05 DIN ISO 18287 Pyren mg/kg TR 0.13 0.79 0.06 0.05 DIN ISO 18287 Pyren mg/kg TR 0.08 0.62 0.05 0.05 DIN ISO 18287 Benz(a)anthracen mg/kg TR 0.08 0.62 0.05 0.05 DIN ISO 18287 Benz(b)fluoranthen mg/kg TR 0.08 0.62 0.05 0.05 DIN ISO 18287 Benzo(b)fluoranthen mg/kg TR 0.09 0.42 0.05 0.05 DIN ISO 18287 Benzo(b)fluoranthen mg/kg TR 0.08 0.71 0.05 0.05 DIN ISO 18287 Benzo(c)fluoranthen mg/kg TR 0.08 0.71 0.05 0.05 DIN ISO 18287 Benzo(a)pyren mg/kg TR 0.05 0.22 0.05 0.05 DIN ISO 18287 Benzo(a)pyren mg/kg TR 0.07 0.68 0.05 0.05 DIN ISO 18287 Benzo(b)fluoranthen mg/kg TR 0.07 0.68 0.05 0.05 DIN ISO 18287 Benzo(b)fluoranthen mg/kg TR 0.07 0.68 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.06 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.06 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.06 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,	Bezeichnung		BS 13-18 /3	BS 13-18 /4	BS 13-18 /5		
Naphthalin mg/kg TR < 0,05 0,05 < 0,05 DIN ISO 18287 Acenaphthylen mg/kg TR < 0,05			HWS Emme: Rüti	HWS Emme: Rüti	HWS Emme: Rüti		
Naphthalin mg/kg TR < 0,05 0,05 < 0,05 DIN ISO 18287 Acenaphthylen mg/kg TR < 0,05							
Naphthalin mg/kg TR < 0,05 0,05 < 0,05 DIN ISO 18287 Acenaphthylen mg/kg TR < 0,05							
Naphthalin mg/kg TR < 0,05 0,05 < 0,05 DIN ISO 18287 Acenaphthylen mg/kg TR < 0,05							
Acenaphthylen mg/kg TR < 0.05	PAK (EPA) :						
Acenaphthen mg/kg TR < 0.05	Naphthalin	mg/kg TR	< 0,05	0,05	< 0,05	0,05	DIN ISO 18287
Fluoren mg/kg TR	Acenaphthylen	mg/kg TR	< 0,05	0,10	< 0,05	0,05	DIN ISO 18287
Phenanthren mg/kg TR 0.08 0.62 < 0.05 0.05 DIN ISO 18287 Anthracen mg/kg TR < 0.05 0.23 < 0.05 0.05 DIN ISO 18287 Fluoranthen mg/kg TR 0.17 1.00 0.06 0.05 DIN ISO 18287 Pyren mg/kg TR 0.13 0.79 0.06 0.05 DIN ISO 18287 Benz(a)anthracen mg/kg TR 0.08 0.62 < 0.05 0.05 DIN ISO 18287 Chrysen mg/kg TR 0.09 0.42 < 0.05 0.05 DIN ISO 18287 Benzo(b)fluoranthen mg/kg TR 0.08 0.71 < 0.05 0.05 DIN ISO 18287 Benzo(b)fluoranthen mg/kg TR 0.08 0.71 < 0.05 0.05 DIN ISO 18287 Benzo(b)fluoranthen mg/kg TR 0.05 0.22 < 0.05 0.05 DIN ISO 18287 Benzo(a)pyren mg/kg TR 0.07 0.58 < 0.05 0.05 DIN ISO 18287 Dibenzo(a,h)anthracen mg/kg TR < 0.05 0.06 < 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR < 0.05 0.05 0.05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR < 0.05 0.30 < 0.05 DIN ISO 18287 Brandeno(1,2,3-c,d)pyren mg/kg TR < 0.05 0.30 < 0.05 DIN ISO 18287 DIN ISO 18287 PCB: PCB 28 mg/kg TR - < 0.05 0.30 < 0.05 DIN ISO 18287 PCB 101 mg/kg TR - < 0.005 - 0.005 DIN ISO 18287 PCB 138 mg/kg TR - < 0.005 - 0.005 DIN ISO 18287 PCB 153 mg/kg TR - < 0.005 - 0.005 DIN ISO 182414-20 Summe 6 PCB (DIN) mg/kg TR - < 0.005 DIN ISO 182414-20 Summe 6 PCB (Incl. mg/kg TR - < 0.005 DIN ISO 182414-20 Summe 6 PCB (Incl. mg/kg TR - < 0.005 DIN ISO 182414-20 Summe 6 PCB (Incl. mg/kg TR - < 0.005 DIN ISO IN ISO I	Acenaphthen	mg/kg TR	< 0,05	0,09	< 0,05	0,05	DIN ISO 18287
Anthracen mg/kg TR < 0.05 0,23 < 0.05 0,05 DIN ISO 18287 Fluoranthen mg/kg TR 0,17 1,00 0,06 0,05 DIN ISO 18287 Pyren mg/kg TR 0,13 0,79 0,06 0,05 DIN ISO 18287 Benz(a)anthracen mg/kg TR 0,08 0,62 < 0,05 0,05 DIN ISO 18287 Chrysen mg/kg TR 0,09 0,42 < 0,05 0,05 DIN ISO 18287 Benz(b)fluoranthen mg/kg TR 0,08 0,71 < 0,05 0,05 DIN ISO 18287 Benz(c)fluoranthen mg/kg TR 0,08 0,71 < 0,05 0,05 DIN ISO 18287 Benz(a)anthracen mg/kg TR 0,08 0,71 < 0,05 0,05 DIN ISO 18287 Benz(b)fluoranthen mg/kg TR 0,07 0,58 0,05 0,05 DIN ISO 18287 Benz(a)pyren mg/kg TR 0,07 0,58 < 0,05 0,05 DIN ISO 18287 Dibenz(a,h)anthracen mg/kg TR 0,07 0,58 < 0,05 0,05 DIN ISO 18287 Dibenz(g,h,i)perylen mg/kg TR < 0,05 0,06 < 0,05 0,05 DIN ISO 18287 Benz(g,h,i)perylen mg/kg TR < 0,05 0,30 < 0,05 0,05 DIN ISO 18287 Benz(1,2,3-c,d)pyren mg/kg TR < 0,05 0,30 < 0,05 0,05 DIN ISO 18287 Summe PAK nach EPA mg/kg TR - < 0,05 0,30 < 0,05 DIN ISO 18287 PCB: PCB 28 mg/kg TR - < 0,05 0,30 < 0,05 DIN ISO 18287 PCB 52 mg/kg TR - < 0,005 - 0,005 DIN ISO 18287 PCB 101 mg/kg TR - < 0,005 - 0,005 DIN ISO 18287 PCB 138 mg/kg TR - < 0,005 - 0,005 DIN ISO 18287 PCB 138 mg/kg TR - < 0,005 - 0,005 DIN ISO 18414-20 PCB 153 mg/kg TR - < 0,005 - 0,005 DIN ISO 18414-20 PCB 160 mg/kg TR - < 0,005 - 0,005 DIN ISO 18414-20 Summe 6 PCB (DIN) mg/kg TR - < 0,005 - 0,005 DIN ISO 18414-20 Summe 6 PCB (DIN) mg/kg TR - < 0,005 - 0,005 DIN ISO 101 ISO	Fluoren	mg/kg TR	< 0,05	0,20	< 0,05	0,05	DIN ISO 18287
Fluoranthen mg/kg TR 0,17 1,00 0,06 0,05 DIN ISO 18287 Pyren mg/kg TR 0,13 0,79 0,06 0,05 DIN ISO 18287 Benz(a)anthracen mg/kg TR 0,08 0,62 <0,05 0,05 DIN ISO 18287 Chrysen mg/kg TR 0,09 0,42 <0,05 0,05 DIN ISO 18287 Benzo(b)fluoranthen mg/kg TR 0,08 0,71 <0,05 0,05 DIN ISO 18287 Benzo(b)fluoranthen mg/kg TR 0,08 0,71 <0,05 0,05 DIN ISO 18287 Benzo(k)fluoranthen mg/kg TR 0,07 0,58 0,05 0,05 DIN ISO 18287 Dibenzo(a,h)anthracen mg/kg TR 0,07 0,58 <0,05 0,05 DIN ISO 18287 Dibenzo(g,h,i)perylen mg/kg TR <0,05 0,06 <0,05 0,05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR <0,05 0,30 <0,05 0,05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR <0,05 0,30 <0,05 0,05 DIN ISO 18287 Benzo(1,2,3-c,d)pyren mg/kg TR <0,05 0,30 <0,05 0,05 DIN ISO 18287 PCB: PCB 28 mg/kg TR 0,70 6,29 0,12 DIN ISO 18287 PCB 101 mg/kg TR - <0,005 - 0,005 DIN ISO 18287 PCB 101 mg/kg TR - <0,005 - 0,005 DIN ISO 18287 PCB 138 mg/kg TR - <0,005 - 0,005 DIN 38414-20 PCB 153 mg/kg TR - <0,005 - 0,005 DIN 38414-20 PCB 153 mg/kg TR - <0,005 - 0,005 DIN 38414-20 Summe 6 PCB (DIN) mg/kg TR - <0,005 - 0,005 DIN 38414-20 Summe 6 PCB (Incl. mg/kg TR - <0,005 - 0,005 DIN 38414-20 Summe 6 PCB (Incl. mg/kg TR - <0,005 - 0,005 DIN 38414-20 Summe 6 PCB (Incl. mg/kg TR - <0,005 - 0,005 DIN 38414-20	Phenanthren	mg/kg TR	0,08	0,62	< 0,05	0,05	DIN ISO 18287
Pyren mg/kg TR 0,13 0,79 0,06 0,05 DIN ISO 18287 Benz(a)anthracen mg/kg TR 0,08 0,62 < 0,05	Anthracen	mg/kg TR	< 0,05	0,23	< 0,05	0,05	DIN ISO 18287
Pyren mg/kg TR 0,13 0,79 0,06 0,05 DIN ISO 18287 Benz(a)anthracen mg/kg TR 0,08 0,62 < 0,05	Fluoranthen	mg/kg TR	0,17	1,00	0,06	0,05	DIN ISO 18287
Benz(a)anthracen mg/kg TR 0.08 0.62 < 0.05 DIN ISO 18287 Chrysen mg/kg TR 0.09 0.42 < 0.05	Pyren	mg/kg TR	0,13	0,79	0,06	0,05	
Chrysen mg/kg TR 0,09 0,42 < 0,05 0,05 DIN ISO 18287 Benzo(b)fluoranthen mg/kg TR 0,08 0,71 < 0,05 0,05 DIN ISO 18287 Benzo(k)fluoranthen mg/kg TR 0,05 0,22 < 0,05 0,05 DIN ISO 18287 Benzo(a)pyren mg/kg TR 0,07 0,58 < 0,05 0,05 DIN ISO 18287 Dibenzo(a,h)anthracen mg/kg TR < 0,05 0,06 < 0,05 0,05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR < 0,05 0,06 < 0,05 0,05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR < 0,05 0,30 < 0,05 DIN ISO 18287 Indeno(1,2,3-c,d)pyren mg/kg TR < 0,05 0,30 < 0,05 DIN ISO 18287 Summe PAK nach EPA mg/kg TR 0,70 6,29 0,12 DIN ISO 18287 PCB: PCB 28 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 52 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 101 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 138 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 153 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 180 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 Summe 6 PCB (Incl. mg/kg TR - < 0,005 DIN 38414-20 Summe 6 PCB (Incl. mg/kg TR - < 0,005 DIN 38414-20	Benz(a)anthracen	mg/kg TR	0,08	0,62	< 0,05		DIN ISO 18287
Benzo(k)fluoranthen mg/kg TR < 0,05 0,22 < 0,05 DIN ISO 18287 Benzo(a)pyren mg/kg TR 0,07 0,58 < 0,05	Chrysen	mg/kg TR	0,09	0,42	< 0,05		
Benzo(a)pyren mg/kg TR 0,07 0,58 < 0,05 0,05 DIN ISO 18287 Dibenzo(a,h)anthracen mg/kg TR < 0,05 0,06 < 0,05 0,05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR < 0,05 0,30 < 0,05 0,05 DIN ISO 18287 Indeno(1,2,3-c,d)pyren mg/kg TR < 0,05 0,30 < 0,05 0,05 DIN ISO 18287 Summe PAK nach EPA mg/kg TR 0,70 6,29 0,12 DIN ISO 18287 PCB: PCB 28 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 52 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 101 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 138 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 153 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 180 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 Summe 6 PCB (DIN) mg/kg TR - < 0,005 DIN 38414-20 Summe 6 PCB (incl. mg/kg TR - < 0,005 DIN 38414-20 Summe 6 PCB (incl. mg/kg TR - < 0,005 DIN 38414-20 Summe 6 PCB (incl. mg/kg TR - < 0,005 DIN 38414-20	Benzo(b)fluoranthen	mg/kg TR	80,0	0,71	< 0,05	0,05	DIN ISO 18287
Benzo(a)pyren mg/kg TR 0,07 0,58 < 0,05 0,05 DIN ISO 18287 Dibenzo(a,h)anthracen mg/kg TR < 0,05	Benzo(k)fluoranthen	mg/kg TR	< 0,05	0,22	< 0,05	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen mg/kg TR < 0,05 0,06 < 0,05 DIN ISO 18287 Benzo(g,h,i)perylen mg/kg TR < 0,05	Benzo(a)pyren	mg/kg TR	0,07	0,58	< 0,05		
Benzo(g,h,i)perylen mg/kg TR < 0,05 0,30 < 0,05 DIN ISO 18287 Indeno(1,2,3-c,d)pyren mg/kg TR < 0,05	Dibenzo(a,h)anthracen	mg/kg TR	< 0,05	0,06	< 0,05	0,05	
Indeno(1,2,3-c,d)pyren mg/kg TR < 0,05 0,30 < 0,05 DIN ISO 18287 PCB : PCB 28 mg/kg TR - < 0,005	Benzo(g,h,i)perylen	mg/kg TR	< 0,05	0,30	< 0,05	0,05	
PCB: PCB 28 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 52 mg/kg TR - < 0,005	Indeno(1,2,3-c,d)pyren	mg/kg TR	< 0,05	0,30	< 0,05	0,05	
PCB : PCB 28 mg/kg TR - < 0,005	Summe PAK nach EPA	mg/kg TR	0,70	6,29	0,12		
PCB 28 mg/kg TR - < 0,005							
PCB 52 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 101 mg/kg TR - < 0,005							
PCB 101 mg/kg TR - < 0,005		754, (574,	=	< 0,005		0,005	DIN 38414-20
PCB 138 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 153 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 PCB 180 mg/kg TR - < 0,005 - 0,005 DIN 38414-20 Summe 6 PCB (DIN) mg/kg TR - < 0,005 DIN 38414-20 Summe 6 PCB (incl. mg/kg TR 0,005 DIN 38414-20 Summe 6 PCB (incl. mg/kg TR 0,005 DIN 38414-20		mg/kg TR	(A)	< 0,005	•	0,005	DIN 38414-20
PCB 153 mg/kg TR - < 0,005		mg/kg TR	-	< 0,005	•	0,005	DIN 38414-20
PCB 180 mg/kg TR - <0,005 - 0,005 DIN 38414-20 Summe 6 PCB (DIN) mg/kg TR DIN 38414-20 Summe 6 PCB (incl. mg/kg TR 0,08	PCB 138	mg/kg TR	-	< 0,005		0,005	DIN 38414-20
Summe 6 PCB (DIN) mg/kg TR - - - DIN 38414-20 Summe 6 PCB (incl. mg/kg TR - - 0,08		mg/kg TR	(=)	< 0,005	42	0,005	DIN 38414-20
Summe 6 PCB (DIN) mg/kg TR - - - DIN 38414-20 Summe 6 PCB (incl. mg/kg TR - - 0,08	PCB 180	mg/kg TR	-	< 0,005	×	0,005	
0,00	Summe 6 PCB (DIN)	mg/kg TR	4	<u>.</u>			
i aktor 4,0)	Summe 6 PCB (incl. Faktor 4,3)	mg/kg TR	4	is in the second		0,08	

HWS Emme 315.201.014

Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seite 14 von 15 06.02.2014

Proben durch IF-Kurier abgeholt

Matrix: Feststoff

Probennummer Bezeichnung

131076463 BS 13-19/3

131076464 BS 13-19 /4 131076465 BS 13-19 /5

HWS Emme: Rüti HWS Emme: Rüti HWS Emme: Rüti

Finnangsdatum:

Eingangsdatum:		19.11.2013	19.11.2013	19.11.2013		
Parameter	Einheit				Bestimmun -grenze	gs Methode
Feststoffuntersuchung	en:					
Trockensubstanz	Masse-%	80,4	75,3	92,9	0,1	DIN ISO 11465
TC	Masse-% TR	4,8	7,5	-	0,1	DIN EN 13137
TIC	Masse-% TR	2,2	2,3		0,1	DIN EN 13137
TOC	Masse-% TR	2,6	5,2	-	0,1	DIN EN 13137
Metalle im Feststoff :						
Antimon	mg/kg TR	< 5	< 5	< 5	5	DIN-EN-ISO 11885
Arsen	mg/kg TR	12	20	8	3	DIN EN ISO 11885
Blei	mg/kg TR	110	260	270	5	DIN EN ISO 11885
Cadmium	mg/kg TR	1,7	5,4	1,9	0,5	DIN EN ISO 11885
Chrom	mg/kg TR	54	190	140	5,0	DIN EN ISO 11885
Kobalt	mg/kg TR	18	71	27	5	DIN EN ISO 11885
Kupfer	mg/kg TR	220	800	4600	5	DIN EN ISO 11885
Nickel	mg/kg TR	52	600	43	10	DIN EN ISO 11885
Quecksilber	mg/kg TR	< 0,1	< 0,1	< 0,1	0,1	DIN EN 1483
Zink	mg/kg TR	240	560	1800	10	DIN EN ISO 11885
KW-Index C10-C40	mg/kg TR	2600	15000	1900	10	DIN EN 14039

HWS Emme 315.201.014 Prüfbericht Nr. 2029984 Auftrag Nr. 2797115

Seite 15 von 15 06.02.2014

Probennummer Bezeichnung 131076463 BS 13-19 /3 131076464 BS 13-19 /4 131076465 BS 13-19 /5

		20 10 1070	DO 10-1074	00 10-1975		
		HWS Emme: Rüti	HWS Emme: Rüti	HWS Emme: Rüti		
PAK (EPA) :						
Naphthalin	mg/kg TR	< 0,05	0,33	< 0,05	0,05	DIN ISO 18287
Acenaphthylen	mg/kg TR	< 0,05	0,09	< 0,05	0,05	DIN ISO 18287
Acenaphthen	mg/kg TR	< 0,05	0,25	< 0,05	0,05	DIN ISO 18287
Fluoren	mg/kg TR	< 0,05	0,46	< 0,05	0,05	DIN ISO 18287
Phenanthren	mg/kg TR	0,19	2,1	< 0,05	0,05	DIN ISO 18287
Anthracen	mg/kg TR	< 0,05	0,59	< 0,05	0,05	DIN ISO 18287
Fluoranthen	mg/kg TR	0,63	3,1	< 0,05	0,05	DIN ISO 18287
Pyren	mg/kg TR	0,68	3,1	0,08	0,05	DIN ISO 18287
Benz(a)anthracen	mg/kg TR	0,37	2,3	< 0,05	0,05	DIN ISO 18287
Chrysen	mg/kg TR	0,41	2,3	< 0,05	0,05	DIN ISO 18287
Benzo(b)fluoranthen	mg/kg TR	0,53	2,1	< 0,05	0,05	DIN ISO 18287
Benzo(k)fluoranthen	mg/kg TR	0,19	0,68	< 0,05	0,05	DIN ISO 18287
Benzo(a)pyren	mg/kg TR	0,35	1,3	< 0,05	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen	mg/kg TR	< 0,05	0,15	< 0,05	0,05	DIN ISO 18287
Benzo(g,h,i)perylen	mg/kg TR	0,17	0,54	< 0,05	0,05	DIN ISO 18287
Indeno(1,2,3-c,d)pyren	mg/kg TR	0,16	0,59	< 0,05	0,05	DIN ISO 18287
Summe PAK nach EPA	mg/kg TR	3,68	19,98	0,08		DIN ISO 18287
PCB:						
PCB 28	mg/kg TR	0,009	0,062	< 0,005	0,005	DIN 38414-20
PCB 52	mg/kg TR	0,10	0,97	0,066	0,005	DIN 38414-20
PCB 101	mg/kg TR	0,18	1,4	0,12	0,005	DIN 38414-20
PCB 138	mg/kg TR	0,21	1,3	0,14	0,005	DIN 38414-20
PCB 153	mg/kg TR	0,19	0,97	0,15	0,005	DIN 38414-20
PCB 180	mg/kg TR	0,075	0,33	0,039	0,005	DIN 38414-20
Summe 6 PCB (DIN)	mg/kg TR	0,764	5,032	0,515		DIN 38414-20
Summe 6 PCB (incl.	mg/kg TR	3,285	21,638	2,214	0,08	
Faktor 4,3)						

Hochwasserschutz und Revitalisierung Emme Solothurn, Wehr Biberist bis Aare Sanierungsprojekt Deponie Rüti

Anhang 6.2

Wassergehalt / Körnung

SGS Institut Fresenius GmbH Hauptstrasse 174 5742 Kölliken

Friedlipartner AG Geotechnik Altlasten Umwelt Nansenstrasse 5 8050 ZÜRICH Anlage zu Prüfbericht 2029984 Aufftrags Nr. 2797115 Kunden Nr. 10074212

Herr Dr. Lutz Zabel
Telefon 062 738 38 64
Fax 062 738 38 78
Environmental Services
SGS Institut Fresenius GmbH
Hauptstrasse 174

5742 Kölliken

Kölliken, 05.02.2014

Ihr Auftrag/Projekt: HWS Emme, Zusatzuntersuchungen Kehrichtdeponie 2013/14

Ihr Bestellzeichen: 315.201.014 Ihr Bestelldatum: 07.11.2013

Prüfzeitraum von 25.11.2013 bis 13.01.2014 erste laufende Probenummer 131076421 Probeneingang am 19.11.2013

Anlage 1

Wassergehalte nach DIN 18121

Kornsummenkurven / Kornverteilungsdaten

Maren Schwalm Laborleitung

Dr. Lutz Zab Standortleite

Seite 1 von 32 Seiten

SGS INSTITUT FRESENIUS GmbH

Im Maisel 14 D-65232 Taunusstein t +49 6128 744 - 0 (+49 6128 744 - 130 www.institut-fresenius de Geschäftsfährer Vincent Gienze Furnen, Aufsichesretvorsstrender Dirk Hellemans, Sitz der Gesellschaft. Taunusstein, HRB 21543 Amtsgericht Wirasbeiten Sitz der Zweigniederlassung Köllichen (DH)

Anlage 1

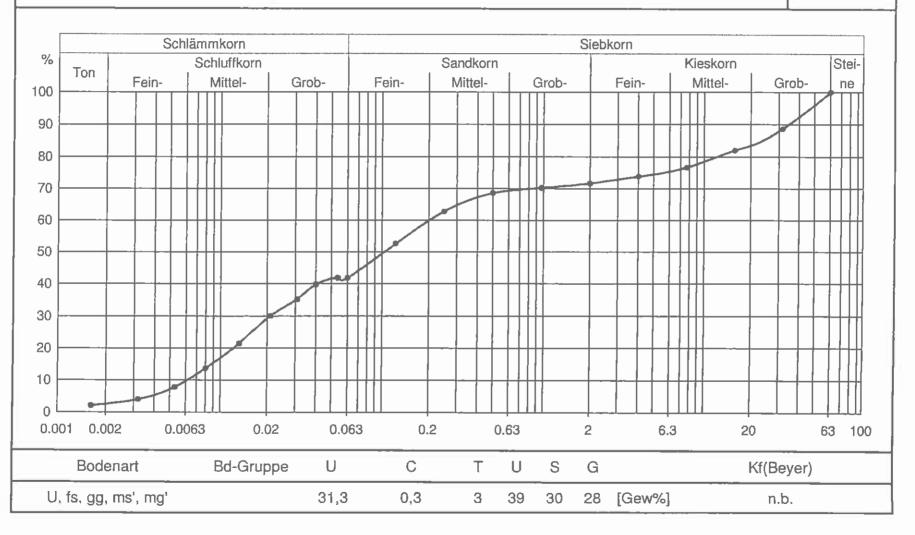
Prüfbericht 2029984

Seite 2 von 32

Bestimmung	sgrenze		Wassergehalt	Anteil > 30 mm %
131076436	BS 13-14 /5b	HWS Emme: Rüti	18.5	16.3
131076440	BS 13-15/4	HWS Emme: Rüti	29.8	37.5
131076442	BS 13-15/6	HWS Emme: Rüti	15.7	6.8
131076445	BS 13-16 /3	HWS Emme: Rüti	16.1	9.8
131076446	BS 13-16 /4	HWS Emme: Rüti	7.0	0
131076451	BS 13-17 /3	HWS Emme: Rüti	17.2	6.4
131076452	BS 13-17 /4	HWS Emme: Rüti	18.8	26.6
131076453	BS 13-17 /5	HWS Emme: Rüti	5.3	29.4
131076456	BS 13-18 /2	HWS Emme: Rüti	13.6	16.3
131076457	BS 13-18 /3	HWS Emme: Rüti	12.7	11.7
131076458	BS 13-18 /4	HWS Emme: Rüti	14.4	21.8
131076459	BS 13-18 /5	HWS Emme: Rüti	19.3	11.6
131076463	BS 13-19 /3	HWS Emme: Rüti	19.3	21.3
131076464	BS 13-19 /4	HWS Emme: Rüti	24.3	20.0
131076465	BS 13-19 /5	HWS Emme: Rüti	6.4	59.4

Methode: Bestimmung Wassergehalt nach DIN 18121

SGS INSTITUT FRESENIUS GmbH


Kornsummenkurve nach DIN 18123

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076247 / BS13-8/3, Rüti

Il. 201 Datum: Ort: HWS Emme Tiefe:

SGS

Anwender: VAS Uni-Korn Projekt: SGS INSTITUT FRESENIUS GmbH Kornverteilungsdaten und Beiwerte 2797115 / Zusatzuntersuchungen Altf. 201 Ausdruck vom 05.02.2014 - 14:37

Probe: 131076247 / BS13-8/3, Rüti

Siebung der Probe

Korngröße	Masse der Rückslände	Siebrückstände	Summe der Siebdurchgänge
[mm]	[9]	[Gew%]	[Gew%]
125	-	-	40
63	-	-	100,00
31.5	306,25	11,36	88,64
16	178,36	6,62	82,02
8	145,14	5,39	76,63
4	77,87	2,89	73,74
2	56.35	2.09	71,65
1	38,46	1,43	70,23
0,5	45,49	1,69	68,54
0,25	1 53,6 5	5,70	62,84
0.125	276,62	10,26	52,57
0,063	288,38	10,70	41,87
< 0,063	1128,41	41.87	

Gesamttrockenmasse: 2694,98 g Summe: 2694.98 g Siebverlust:

Art der Siebung: Nass

Bestimmung der Korngrößenverteilung durch Sedimentation

Trockenmasse: 51,15 g Korndichte: 2,670 g/cm³ Dispergierungsmittel: 0.5g Natriumpyrophosphat

Meniskuskorrektur: 1,4 g/cm³

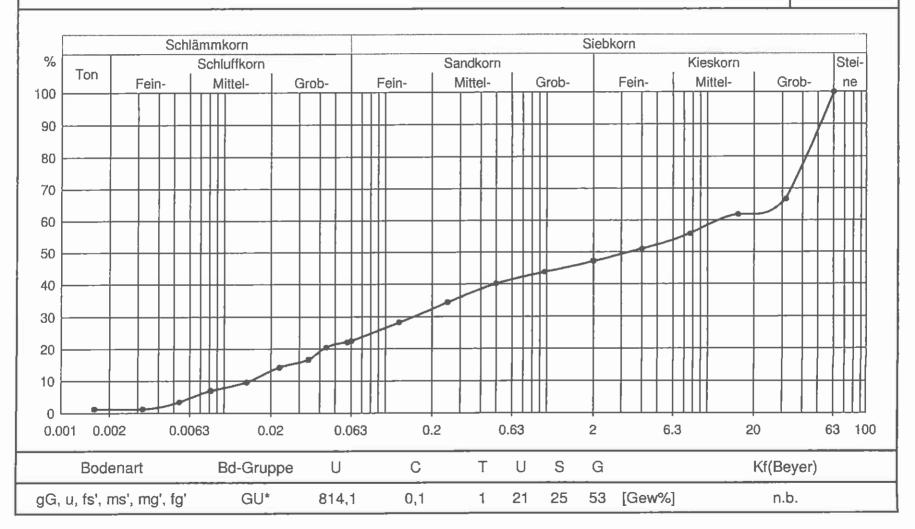
							9. 4.11		
Uhrzeit	Zeit bis zur Ablesung	R'	R=R'+Cm	ď	Т	Ст	R+C _T	а	a _{tol}
	[h:min:s]	[g/cm ³]	[g/cm ³]	[mm]	[20]	[g/cm ³]	[g/cm ³]	[Gew%]	[Gew%]
i	00:00:30	30,5	31,9	0,0549	20,1	0,02	31,9	99,8	41.8
	00:01:00	29,0	30,4	0,0403	20,1	0.02	30,4	95,1	39,8
Í	00:02:00	25,5	26,9	0,0307	20,1	0,02	26,9	84,1	35,2
1	00:05:00	21,5	22,9	0,0209	20,1	0.02	22,9	71,6	30.0
()	00:15:00	15,0	16,4	0,0134	20,1	0.02	16,4	51,3	21,5
	00:45:00	9,0	10,4	0.0083	20,2	0,04	10,4	32,6	13,7
	02:00:00	4,5	5,9	0,0054	20,3	0,06	6,0	18,6	7.8
1	06:00:00	1.5	2,9	0,0032	20,6	0,12	3,0	9,4	3,9
E .	24:00:00	0,0	1,4	0.0016	20.3	0,06	1,5	4.6	1.9

В	e	i	W	e	r	1	e

	_		
Bodenart:	Schluff, feinsandig, grobkiesig, schwach mittelsan	dig, schwach mittell	kiesig
Kürzel:	U, fs, gg, ms', mg'	Anteil	[Gew %]
Bodengruppe:		Τ	2,50
Frostempfindlichkeitsklasse:	(n.b.)	U	39,37
Verdichtungsfähigkeit:	(n.b.)	S	29.78
U (Ungleichförmigkeitszahl):	31,3	Ğ	28.35
C (Krūmmungszahl):	0.3	_	-0,00

Schüttkorn (n. Bieske, 1961): Filterschlitzweite (n. Bieske, 1961):	8 - 16 mm 0,11 mm	
Kf nach Beyer. 1964 Kf nach Hazen, 1893 Kf nach Zieschang, 1964 Kf nach Seelheim, 1880 Kf nach Mallet & Pacquant, 1954 ¹ Kf nach Mallet & Pacquant, 1954 ²	(d10 <= 0.06) (d10 zu klein) (d10 < 0.1) (d10 < 0.1) 1,46 E-07 (m/s) 1,62 E-07 (m/s)	schwach durchlässig schwach durchlässig

Kornsummenkurve nach DIN 18123


SGS

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076421 / BS 13-12/3 Rüti

Ort: HWS Emme

Datum: Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornvertellungsdaten und Beiwerte 2797115 / Zusatzuntersuchungen Altf. 201

Ausdruck vom 12.12.2013 - 09:53 Probe: 131076421 / BS 13-12/3 Rütl

Slebung der Probe

Korngröße	Masse der Rückstände	Siebrückstände	Summe der Siebdurchgänge
[mm]	[9]	[Gew%]	[Gew%]
125	*	-	-
63	**		100,00
31.5	1093,98	33,33	66,67
16	157,74	4,81	61,86
8	197,11	6,01	55,85
4	158,34	4,82	51,03
2	128,96	3,93	47,10
1	109,63	3,34	43,76
0.5	118,49	3,61	40,15
0,25	189,52	5,77	34,37
0,125	204,81	6,24	28,13
0.063	188,34	5,74	22,40
< 0.063	735.01	22.40	

Gesamttrockenmasse: 3281,93 g Summe: 3281,93 g Siebverlust:

Art der Siebung: Nass

Bestimmung der Korngrößenverteilung durch Sedimentation

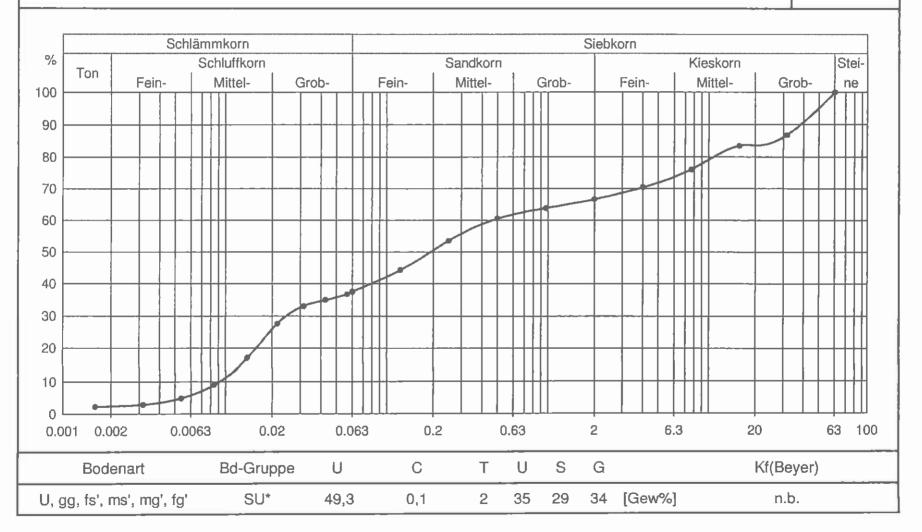
Trockenmasse: 46,25 g Korndichte: 2,670 g/cm³ Dispergierungsmittel: 0.5g Natriumpyrophosphat

Meniskuskorrektur: 1,4 g/cm3

							g. orr.		
Uhrzeit	Zeit bis zur Ablesung	B'	R=R'+C _m	d	т	Ст	R+C _T	а	a _{lol}
	[h:min:s]	[g/cm³]	[g/cm ³]	[mm]	[%]	[g/cm ³]	[g/cm³]	[Gew%]	[Gew%]
	00:00:30	27,0	28,4	0,0595	20,2	0,04	28,4	98,3	22.0
	00:01:00	25,0	26,4	0,0438	20,2	0,04	26,4	91,4	20,5
	00:02:00	20,0	21,4	0,0339	20,2	0,04	21,4	74,1	16,6
	00:05:00	17,0	18,4	0,0225	20,2	0,04	18,4	63,7	14.3
	00:15:00	11,0	12,4	0,0141	20,2	0,04	12,4	43,0	9,6
	00:45:00	7,5	8.9	0,0085	20.2	0,04	8,9	30,9	6,9
	02:00:00	3,0	4,4	0,0054	20,4	0,08	4,5	15,5	3.5
	06:00:00	0.0	1,4	0,0032	20,7	0,14	1,6	5,4	1,2
	24:00:00	0,0	1,4	0.0016	20,7	0,14	1,5	5,3	1.2

Beiwerte			
Bodenart:	Grobkies, schluffig, schwach feinsandig, schw schwach mittelkiesig, schwach feinkiesig	vach mittelsandig,	<u></u>
Kűrzel:	gG, u, fs', ms', mg', fg'	Anteil	[Gew %]
Bodengruppe:	GU*	T	1.14
Frostempfindlichkeitsklasse:	F3 (sehr frostempfindlich)	Ü	21.25
Verdichtungsfähigkeit:	gut bis mittel (V2)	Š	24,70
U (Ungleichförmigkeitszahl):	814,1	Ğ	52.90
C (Krümmungszahl):	0,1	9	92,00

Schüttkorn (n. Bieske, 1961): Filterschlitzweite (n. Bieske, 1961):	8 - 16 mm 34,08 mm	
Kf nach Beyer, 1964 KI nach Hazen, 1893 Kf nach Zieschang, 1964 Kf nach Seelheim, 1880 Kf nach Mallet & Pacquant, 1954 ¹ Kf nach Mallet & Pacquant, 1954 ²	(d10 <= 0.06) (d10 zu klein) (d10 < 0.1) (d10 < 0.1) 2,48 E-06 (m/s) 2.17 E-06 (m/s)	durchlässig durchlässig


Kornsummenkurve nach DIN 18123

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076426 / BS 13-13/2, Rüti

Ort: HWS Emme

Datum: Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornverteilungsdaten und Beiwerte 2797115 / Zusatzuntersuchungen Altl. 201

Ausdruck vom 18.12.2013 - 10:43

Probe: 131076426 / BS 13-13/2, Hüti

Slebung der Probe

Korngröße	Masse der Rückstände	Siebrückstände	Summe der Siebdurchgänge [Gew%]
[[[]]]	[9]	[G6W,-76]	(GBW76)
125	-	-	•
63	-	-	100,00
31,5	403,12	13,20	86,80
16	102,36	3,35	83,45
8	225,44	7,38	76,07
4	174,72	5,72	70,35
2	114,38	3.75	66,60
1	84,24	2,76	63,84
0,5	102,01	3,34	60,50
0,25	208,43	6,82	53,68
0,125	284,29	9,31	44,37
0.063	203,94	6,68	37,69
< 0,063	1151,02	37.69	-

Gesamttrockenmasse: 3053,95 g Summe: 3053,95 g Siebverlust:

Art der Siebung:

Nass

Bestimmung der Korngrößenverteilung durch Sedimentation

Trockenmasse: 48,59 g Korndichte: 2,670 g/cm³ Dispergierungsmittel: 0.5g Natriumpyrophosphat

Meniskuskorrektur: 1,4 g/cm3

Uhrzeit	Zeit bis zur Ablesung	R'	R=R'+C _m	d	Т	Ст	R+C _T	a	atot
	[h:min:s]	[g/cm ³]	[g/cm ³]	[mm]	[%]	[g/cm ³]	[g/cm ³]	[Gew%]	[Gew%]
	00:00:30	28,5	29,9	0,0585	18,8	-0,22	29,7	97,7	36,8
	00:01:00	27,0	28,4	0,0428	18,8	-0,22	28,2	92,7	34,9
	00:02:00	25.5	26,9	0,0312	18,8	-0,22	26,7	87,8	33,1
	00:05:00	21,0	22,4	0,0214	18,8	-0,22	22,2	73,0	27,5
	00:15:00	12,5	13,9	0,0140	18,8	-0,22	13,7	45,0	17,0
	00:45:00	6,0	7,4	0.0087	19,1	-0,17	7.2	23,8	9,0
	02:00:00	2,5	3,9	0,0055	20,1	0,02	3,9	12,9	4,9
	06:00:00	0,5	1,9	0,0032	21,8	0.36	2,3	7,4	2,8
	24:00:00	0,0	1.4	0.0016	21.8	0,36	1,8	5.8	2.2

_		
-	IWe	PT C
υс	11116	1110

Bodenart:	Schluff, grobkiesig, schwach	feinsandig, schwach mittelsandig,

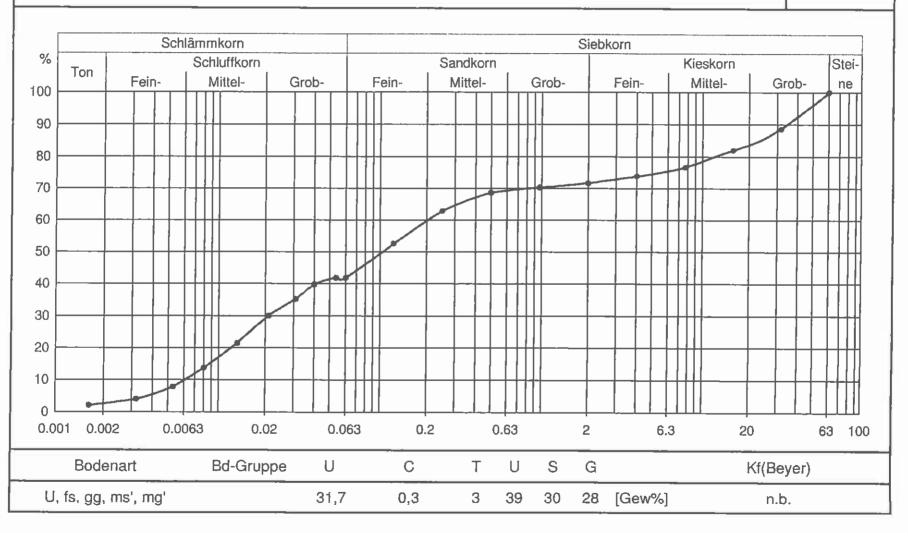
schwach mittelkiesig, schwach feinkiesig

U. gg, fs', ms', mg', fg' [Gew %] Kürzel: Anteil SU Bodengruppe: Т 2.35 F3 (sehr frostempfindlich) Frostempfindlichkeitsklasse: U 35,34 Verdichtungsfähigkeit: mittel (V2) S 28,91 U (Ungleichförmigkeitszahl): 49,3 G 33,40 C (Krümmungszahl): 0.1

Schüttkorn (n. Bieske, 1961): 8 - 16 mm Filterschlitzweite (n. Bieske, 1961): 3,79 mm

Kf nach Beyer, 1964 $(d10 \le 0.06)$ Kí nach Hazen, 1893 (d10 zu klein) Kf nach Zieschang, 1964 (d10 < 0.1)Kf nach Seelheim, 1880 (d10 < 0.1)Kf nach Mallet & Pacquant, 1954 1 2,64 E-07 (m/s) Kf nach Mallet & Pacquant, 1954 2

schwach durchlässig 2,67 E-07 (m/s) schwach durchlässig


Kornsummenkurve nach DIN 18123

Ort: HWS Emme

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076427 / BS13-13/3, Rüti

Datum: Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornvertellungsdaten und Beiwerte 2797115 / Zusatzuntersuchungen Alti. 201

Ausdruck vom 06.12.2013 - 11:44

Probe: 131076427 / BS13-13/3, Rüti

Siebung der Probe

[Masse der		Country of a
Korngröße	Rückstände	Siebrückstände	Summe der Siebdurchgänge
[mm]		[Gew%]	U U
183311	[9]	[Gew76]	[Gew%]
125	-	-	_
63	-	-	100,00
31.5	306,25	11,36	88,64
16	178,36	6,62	82,02
8	145,14	5,39	76,63
4	77,87	2,89	73,74
2	56.35	2.09	71,65
1	38,46	1,43	70,23
0.5	45,49	1,69	68,54
0,25	153,65	5,70	62,84
0,125	276,62	10,26	52,57
0,063	288,38	10,70	41,87
< 0,063	1128,41	41,87	-

Gesamttrockenmasse: 2694,98 g Summe: 2694,98 g Siebverlust:

Art der Siebung:

Nass

Bestimmung der Korngrößenverteilung durch Sedimentation

Trockenmasse: 51,15 g Korndichte: 2,670 g/cm³ Dispergierungsmittel: 0,5g Natriumpyrophosphat

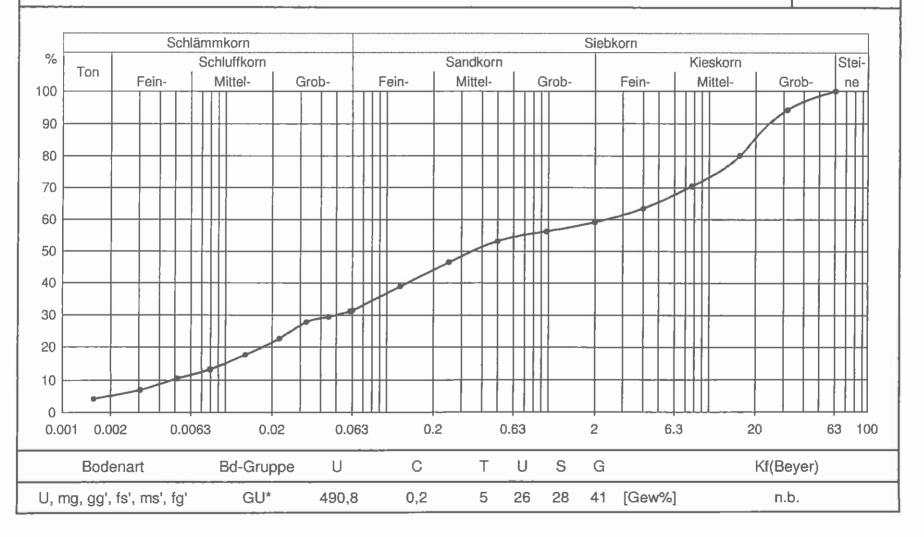
Meniskuskorrektur: 1,4 g/cm3

Zeit bis zur Uhrzeit R=R'+Cm R' d Т Ст R+C_T a Ablesung a_{tot} [g/cm³] [g/cm³] [mm] [°C] [g/cm³] [g/cm³] [Gew.-%] [Gew.-%] 00:00:30 30.5 31.9 0,0549 20,1 0,02 31,9 99,8 41,8 30,4 00:01:00 29,0 30,4 0,0403 20.1 0.02 95,1 39,8 00:02:00 25,5 26,9 0,0307 20,1 0,02 26,9 84,1 35,2 00:05:00 21.5 22.9 0.0209 20,1 0,02 22,9 71,6 30.0 00:15:00 15,0 16,4 0,0134 20,1 0.02 16,4 51,3 21,5 00:45:00 9,0 10,4 0,0083 20,2 0,04 10,4 32.6 13,7 20,3 02:00:00 4,5 5,9 0,0054 0,06 6,0 18,6 7,8 06:00:00 1,5 2,9 0,0032 20,6 0,12 3,0 9,4 3,9 24:00:00 0.0 1.4 0.0016 20,3 0,06 1,5 4.6 1,9

	В	e	î	W	е	r	le
--	---	---	---	---	---	---	----

Bodenart:	Schluff, feinsandig, grobkiesig, schwach mittelsandig	, schwach mittell	riesig
Kürzel:	U, fs, gg, ms', mg'	Anteil	[Ğew %]
Bodengruppe:		T	2,51
Frostempfindlichkeitsklasse:	(n.b.)	ù	39,36
Verdichtungsfähigkeit:	(n.b.)	S	29.78
U (Ungleichförmigkeitszahl):	31,7	Ğ	28.35
C (Krůmmunoszahl):	0.3	Ų.	20,00

Schüttkorn (n. Bieske, 1961): Filterschlitzweite (n. Bieske, 1961);	8 - 16 mm 0,11 mm	
Kf nach Beyer, 1964 Kf nach Hazen, 1893 Kf nach Zieschang, 1964 Kf nach Seelheim, 1880 Kf nach Mallet & Pacquant, 1954 ' Kf nach Mallet & Pacquant, 1954 2	(d10 <= 0.06) (d10 zu klein) (d10 < 0.1) (d10 < 0.1) 1,46 E-07 (m/s) 1,61 E-07 (m/s)	schwach durchlässig schwach durchlässig


Kornsummenkurve nach DIN 18123

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076432 / BS 13-14/2, Rüti

Ort: HWS Emme

Datum: Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornverteilungsdaten und Belwerte 2797115 / Zusatzuntersuchungen Altl. 201

Ausdruck vom 18.12.2013 - 10:49

Probe: 131076432 / BS 13-14/2, Rüti

Siebung der Probe

Korngröße	Masse der Rückstände	Siebrückstände	Summe der Siebdurchgänge
[mm]	[9]	[Gew%]	[Gew%]
125	-	**	-
63	-	-	100,00
31.5	151,67	5,80	94,20
16	370,45	14,17	80.03
8	252.86	9,67	70,36
4	179,56	6,87	63,50
2	111,98	4,28	59,22
1	76,59	2,93	56,29
0,5	79,75	3,05	53,24
0,25	175,22	6,70	46,54
0,125	195,95	7,49	39.04
0.063	200,63	7,67	31,37
< 0,063	820.34	31,37	*

Gesamttrockenmasse: 2615,00 g Summe: 2615,00 g Siebverlust:

Art der Siebung:

Nass

Bestimmung der Korngrößenverteilung durch Sedimentation

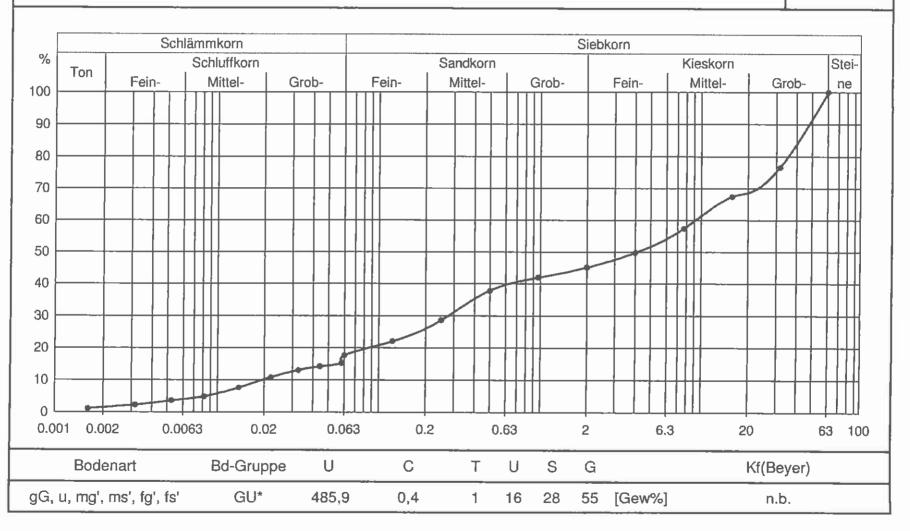
Trockenmasse: 44,61 g Dispergierungsmittel: 0.5g Natriumpyrophosphat

Korndichte: 2,670 g/cm³ Meniskuskorrektur: 1,4 g/cm³

							9		
Uhrzeit	Zeit bis zur Ablesung	R'	R=R'+C _m	d	Т	CT	R+C _T	a	a _{tot}
	[h:min:s]	[g/cm ³]	[g/cm ³]	[mm]	[%]	[g/cm ³]	[g/cm ³]	[Gew. %]	[Gew%]
	00:00:30	26,5	27,9	0,0612	18,7	-0,24	27,7	99.1	31.1
1	00:01:00	25,0	26,4	0,0446	18,7	-0,24	26,2	93.8	29.4
1	00:02:00	23,5	24,9	0,0325	18,7	-0,24	24,7	88.4	27.7
† E	00:05:00	19,0	20,4	0,0222	18,7	-0,24	20,2	72.3	22.7
	00:15:00	14,5	15,9	0,0137	18,7	-0,24	15,7	56,1	17,6
	00:45:00	10.5	11,9	0.0083	19,1	-0,17	11,7	42,1	13,2
	02:00:00	8,0	9,4	0,0052	20,0	0,00	9,4	33,7	10,6
	06:00:00	4,5	5,9	0,0030	21,7	0,34	6,2	22,4	7,0
	24:00:00	2,0	3.4	0.0016	21,7	0,34	3.7	13,4	4.2

Вe	iwe	rte

Bodenart:	Schluff, mittelkiesig, schwach grobkiesig, schw schwach mittelsandig, schwach feinkiesig	vach feinsandig,	
Kürzel: Bodengruppe:	U, mg, gg', fs', ms', fg' GU*	Anteil	[Gew %]
Frostempfindlichkeitsklasse:	F3 (sehr frostempfindlich)	ı U	5,17 26,20
Verdichtungsfähigkeit: U (Ungleichförmigkeitszahl):	gut bis mittel (V2) 490.8	S	27,84
C (Krümmungszahl):	0,2	G	40,78


Schüttkorn (n. Bieske, 1961); Filterschlitzweite (n. Bieske, 1961);	8 - 16 mm 7,74 mm	
Kf nach Beyer, 1964 Kf nach Hazen, 1893 Kf nach Zieschang, 1964 Kf nach Seelheim, 1880 Kf nach Mallet & Pacquant, 1954 ¹ Kf nach Mallet & Pacquant, 1954 ²	(d10 <= 0.06) (d10 zu klein) (d10 < 0.1) (d10 < 0.1) 3,27 E-07 (m/s) 3.20 E-07 (m/s)	schwach durchlässig schwach durchlässio

Kornsummenkurve nach DIN 18123

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076433 / BS 13-14/3, Rüti

tl. 201 Datum: Ort: HWS Emme Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornverteilungsdaten und Beiwerte 2797115 / Zusatzuntersuchungen Alti. 201

Ausdruck vom 06.12.2013 - 11:55

Probe: 131076433 / BS 13-14/3, Rüti

Siebung der Probe

Korngröße	Masse der Rückstände	Siebrückstände	Summe der Siebdurchgänge
[mm]	[9]	[Gew%]	[Gew%]
125	-	-	-
63	-		100.00
31.5	940,91	23,38	76,62
16	368,96	9,17	67,46
8	404,94	10.06	57,40
4	305,39	7,59	49,81
2	186,64	4,64	45,17
1	129,66	3,22	41,95
0,5	163,31	4,06	37,89
0,25	373,32	9,28	28,62
0,125	266,85	6,63	21.99
0.063	1 73, 87	4,32	17,67
< 0,063	711,16	17.67	

Gesamttrockenmasse: 4025,01 g Summe: 4025,01 g

Siebverlust:

Art der Siebung: Nass

Bestimmung der Korngrößenverteilung durch Sedimentation

Trockenmasse: 51,77 g Korndichte: 2,670 g/cm³ Dispergierungsmittel: 0.5g Natriumpyrophosphat

Meniskuskorrektur: 1,4 g/cm³

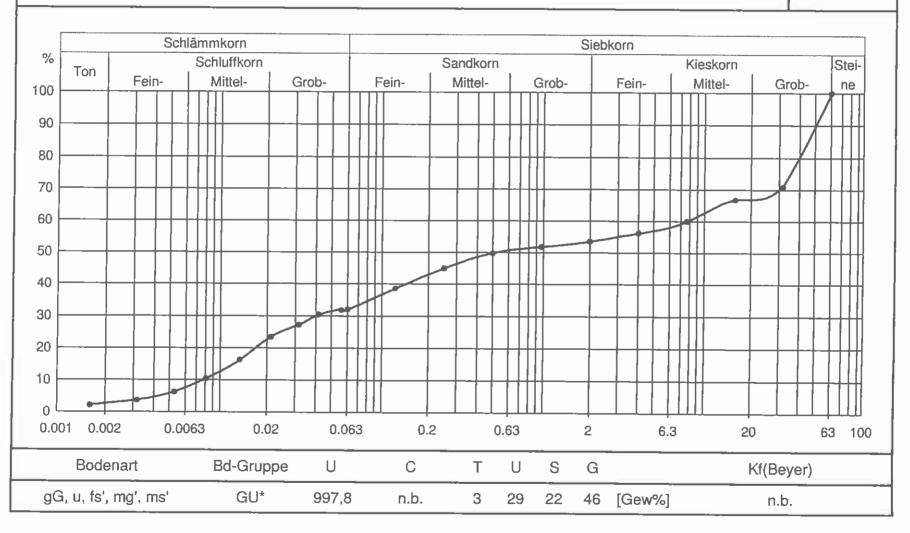
							3, 4,11		
Uhrzeit	Zeit bis zur Ablesung	R'	R=R'+C _m	d	Т	Ст	R+C _T	а	a _{lol}
	[h:min:s]	[g/cm³]	[g/cm ³]	[mm]	[%]	[g/cm ³]	[g/cm ³]	[Gew%]	[Gew%]
	00:00:30	26,5	27,9	0,0603	20,0	0.00	27,9	86,2	15,2
	00:01:00	24,5	25,9	0,0444	20,0	0,00	25,9	80.0	14,1
	00:02:00	22,5	23,9	0,0326	20,0	0,00	23,9	73,8	13,0
	00:05:00	18,5	19,9	0,0220	20,0	0,00	19,9	61,5	10.9
	00:15:00	12,5	13,9	0,0139	20,0	0,00	13,9	42,9	7,6
	00:45:00	7,5	8.9	0,0085	20.1	0,02	8,9	27,5	4,9
	02:00:00	5,0	6,4	0,0053	20,3	0,06	6,5	19,9	3,5
	06:00:00	2,5	3,9	0,0032	20,6	0,12	4,0	12,4	2,2
	24:00:00	0,5	1.9	0,0016	20,3	0,06	2.0	6.0	1.1

Be	iw	erte
~~		~ * * * * * * * * * * * * * * * * * * *

Bodenart:	Grobkies, schluffig, schwach mittelkiesig, schwach schwach feinkiesig, schwach feinsandig	mittelsandig.	
Kürzel:	gG, u, mg', ms', fg', fs'	Anteil	[Gew %]
Bodengruppe:	GU [*]	Τ	1.41
Frostempfindlichkeitsklasse:	F3 (sehr frostempfindlich)	υ	16,26
Verdichtungsfähigkeit:	gut bis mittel (V2)	S	27.50
U (Ungleichförmigkeitszahl):	485,9	G	54.83
C (Krümmungszahl):	0,4		- 1,00

Schüttkorn (n. Bieske, 1961):	8 - 16 mm
Filterschlitzweite (n. Bieske, 1961):	23,25 mm

Kf nach Beyer, 1964 Kf nach Hazen, 1893 Kf nach Zieschang, 1964 Kf nach Seelheim, 1880 Kf nach Mallet & Pacquant, 1954 1 Kf nach Mallet & Pacquant, 1954 2	(d10 <= 0.06) (d10 zu klein) (d10 < 0.1) (d10 < 0.1) 1,41 E-05 (m/s) 1,28 E-05 (m/s)	durchlässig durchlässig
--	---	----------------------------


Kornsummenkurve nach DIN 18123

Ort: HWS Emme

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076435 / BS 13-14/5, Rüti

Datum: Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornverteilungsdaten und Beiwerte 2797115 / Zusatzuntersuchungen Altl. 201 Ausdruck vom 06.12.2013 - 12:24

Probe: 131076435 / BS 13-14/5, Rütí

Slebung der Probe

Korngröße	Masse der Rückstände	Siebrückstände	Summe der Siebdurchgänge
[mm]	[9]	[Gew%]	[Gew%]
125	-	-	-
63	-	-	100,00
31,5	832,97	29,11	70,89
16	116,8	4,08	66,80
8	196,65	6,87	59,93
4	108,0	3,77	56,16
2	74.71	2.61	53,54
1	50,04	1,75	51,80
0,5	56,38	1,97	49,82
0,25	139,27	4,87	44,96
0,125	181,38	6,34	38,62
0.063	191,25	6,68	31,93
< 0,063	913,61	31,93	

Gesamttrockenmasse: 2861,06 g Summe: 2861,06 g

Siebverlust:

Art der Siebung: Nass

Bestimmung der Korngrößenverteilung durch Sedimentation

Trockenmasse: 48,68 g Korndichte: 2,670 g/cm3 Dispergierungsmittel: 0.5g Natriumpyrophosphat Meniskuskorrektur: 1,4 g/cm³

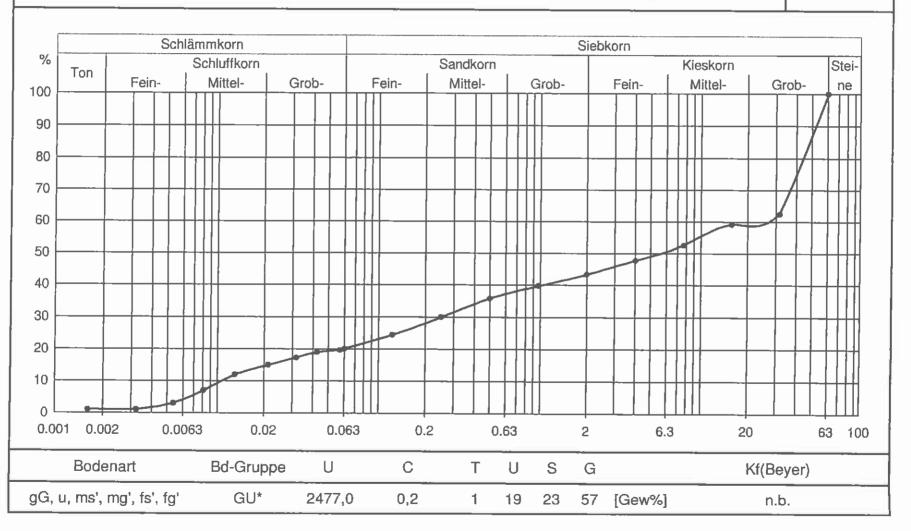
Uhrzeit	Zeit bis zur Ablesung	R'	R=R'+C _m	ď	Т	Ст	R+C _T	а	a _{lot}
	[h:min:s]	[g/cm ³]	[g/cm³]	[mm]	[%]	[g/cm ³]	[g/cm ³]	[Gew%]	[Gew%]
	00:00:30	29,0	30,4	0,0570	20,0	0,00	30,4	99.8	31.9
	00:01:00	27,5	28,9	0,0417	20,0	0,00	28,9	94.9	30.3
	00:02:00	24,5	25,9	0,0314	20,0	0,00	25,9	85,1	27.2
	00:05:00	21,0	22,4	0,0211	20,0	0,00	22,4	73.6	23.5
	00:15:00	14,0	15,4	0,0136	20,0	0.00	15,4	50,6	16,2
	00:45:00	8,5	9.9	0,0084	20,1	0,02	9,9	32,6	10,4
	02:00:00	4,5	5,9	0,0054	20,3	0,06	6,0	19.6	6,2
	06:00:00	2,0	3,4	0,0032	20,6	0,12	3,5	11,5	3,7
	24:00:00	0,5	1.9	0.0016	20,3	0,06	2,0	6.4	2.1

_					
R		iu	ve	m	Δ
_	6	1.4	H 60	/ a =	~

Bodenart:	Grobkies, schluffig, schwach feinsandig, schr schwach mittelsandig	cies, schluffig, schwach feinsandig, schwach mittelkiesig,			
Kürzel:	gG, u, fs', mg', ms'	Anteil	[Gew %]		
Bodengruppe:	GU*	Т	2.55		
Frostempfindlichkeitsklasse:	F3 (sehr frostempfindlich)	U	29.39		
Verdichtungsfähigkeit:	gut bis mittel (V2)	S	21,61		
U (Ungleichförmigkeitszahl):	997,8	G	46.46		
C (Krümmungszahl):	n.b.	-	,		

Schüttkorn (n. Bieske, 1961);	8 - 16 mm
Filterschlitzweite (n. Bieske, 1961):	30,76 mm

Kf nach Beyer, 1964 Kf nach Hazen, 1893 Kf nach Zieschang, 1964 Kf nach Seelheim, 1880 Kf nach Mallet & Pacquant, 1954 ¹ Kf nach Mallet & Pacquant, 1954 ²	(d10 <= 0.06) (d10 zu klein) (d10 < 0.1) (d10 < 0.1) 3,07 E-07 (m/s) 3,03 E-07 (m/s)	schwach durchlässig schwach durchlässig
---	---	--


Kornsummenkurve nach DIN 18123

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076440 / BS13-15/4, Rüti

Ort: HWS Emme

Datum: Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornverteilungsdaten und Beiwerte 2797115 / Zusatzuntersuchungen Alti. 201

Ausdruck vom 06.12.2013 - 12:29

Probe: 131076440 / BS13-15/4.Rüll

Slebung der Probe

Korngröße	Masse der Rückslände	Siebrückstände	Summe der Siebdurchgänge
[mm]	[g]	[Gew%]	[Gew%]
125	₩ b	-	
63	44	-	100,00
31.5	842,33	37,50	62,50
16	73,25	3,26	59,24
8	147,45	6,56	52,67
4	111,17	4,95	47,73
2	98.21	4.37	43,35
1	81,28	3,62	39,73
0.5	67,53	3,90	35,84
0,25	133,18	5,93	29,91
0,125	124,44	5,54	24,37
0,063	97,31	4,33	20,04
< 0,063	450,06	20,04	

Gesamttrockenmasse: 2246,21 g Summe: 2246,21 g Siebverlust:

Art der Siebung: Nass

Bestlmmung der Korngrößenvertellung durch Sedlmentation

Trockenmasse: 47,91 g Korndichte: 2,670 g/cm³ Dispergierungsmittel: 0.5g Natriumpyrophosphat

Meniskuskorrektur: 1,4 g/cm3

Zeit bis zur Uhrzeit R' R=R'+Cm d Т C_T R+CT a Ablesung atot [h:min:s] [g/cm³] [g/cm³] [mm] [°C] [g/cm³] [g/cm³] [Gew.-%] [Gew.-%] 00:00:30 28,0 29,4 0.0586 19.6 -0,07 29,3 97,9 19.6 00:01:00 27,0 0,0424 28,4 18,9 19,6 -0.07 28,3 94,5 00:02:00 24.5 25,9 0,0315 19,6 -0,07 25,8 86,2 17,3 00:05:00 21,0 22,4 0.0212 19.6 -0,07 22,3 74,5 14,9 17,9 16,5 00:15:00 0,0132 19,6 -0,07 17.8 59.5 11,9 9.0 0.0084 00:45:00 10,4 19,8 -0,04 10,4 34.6 6.9 02:00:00 3,0 4,4 0,0055 20,2 0,04 4,4 14,8 3,0 06:00:00 0,1 1,5 0,0032 20,7 0,14 1,6 5,5 1,1 24:00:00 0,0 1.4 0.0016 20.7 0,14 1,5 5,2 1,0

В	e	iv	۷	e	r	t	0

2011101110			
Bodenart:	Grobkies, schluffig, schwach mittelsandig, sc schwach feinsandig, schwach feinkiesig	chwach mittelkiesig,	
Kürzel:	gG, u, ms', mg', fs', fg'	Anteil	[Gew %]
Bodengruppe:	GU*	T	1.02
Frostempfindlichkeitsklasse:	F3 (sehr frostempfindlich)	Ü	19.02
Verdichtungsfähigkeit:	gut bis mittel (V2)	S	23.32
U (Ungleichförmigkeitszahl):	2477,0	Ğ	56,65
C (Krümmungszahl):	0,2	<u> </u>	00,00

Schüttkorn (n. Bieske, 1961); Filterschlitzweite (n. Bieske, 1961);	8 - 16 mm 36,59 mm
Kf nach Beyer, 1964	$(d10 \ll 0.06)$
Kf nach Hazen, 1893	(d10 zu klein)
Kf nach Zieschang, 1964	(410 - 0.1)

Kf nach Hazen, 1893 (d10 zu klein)

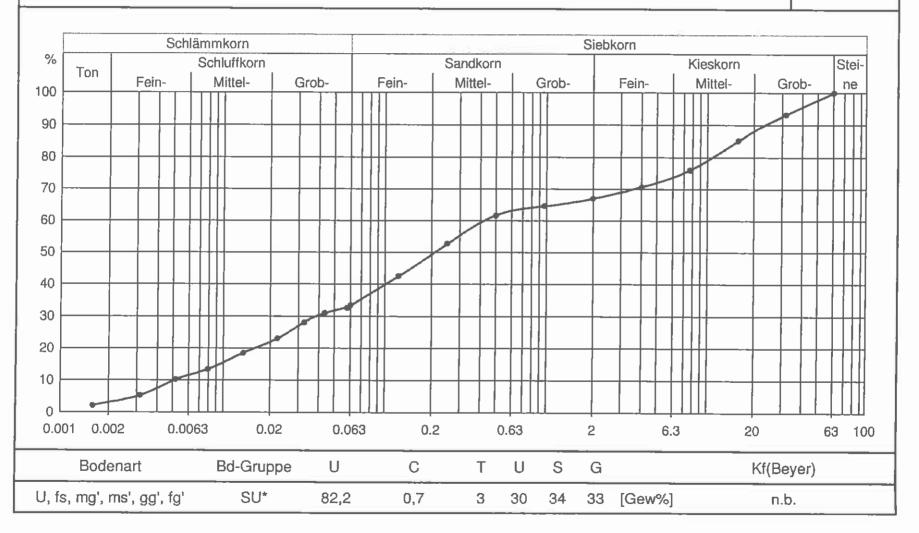
Kf nach Zieschang, 1964 (d10 < 0.1)

Kf nach Seelheim, 1880 (d10 < 0.1)

Kf nach Mallet & Pacquant, 1954 1 6,16 E-06 (m/s)

Kf nach Mallet & Pacquant, 1954 2 5,50 E-06 (m/s)

durchlässig durchlässig


Kornsummenkurve nach DIN 18123

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076442 / BS 13-15/6, Rüti

Ort: HWS Emme

Datum: Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornverteilungsdaten und Belwerte 2797115 / Zusatzuntersuchungen Altl. 201 Ausdruck vom 06.12.2013 - 12:36

Probe: 131076442 / BS 13-15/6, Ritti

Siebung der Probe

Komgröße	Masse der Rückslände	Siebrückstände	Summe der Siebdurchgänge
[mm]	[g]	[Gew%]	[Gew%]
125	-	-	
63	-	-	100,00
31.5	161,78	6,82	93,18
16	190,22	6,02	85,16
8	218,37	9,20	75.96
4	126,32	5,32	70,64
2	86,91	3.66	66,97
1	57,5	2,42	64,55
0.5	68,44	2,88	61,67
0,25	212,69	8,96	52,70
0,125	241,03	10,16	42,54
0.063	219,21	9,24	33,31
< 0,063	790,27	33,31	-

Gesamttrockenmasse: 2372,74 g Summe: 2372,74 g

Siebverfust:

Art der Siebung: Nass

Bestimmung der Korngrößenverteilung durch Sedimentation Trockenmasse: 46,74 g Disper

Korndichte: 2,670 g/cm3

Dispergierungsmittel: 0.5g Natriumpyrophosphat Meniskuskorrektur: 1,4 g/cm³

**										
Uhrzeit	Zeit bis zur Ablesung	R'	R=R'+Cm	d	Т	Ст	R+C _T	a	a _{lot}	-
	[h:min:s]	[g/cm ³]	[g/cm ³]	[mm]	[%]	[g/cm ³]	[g/cm³]	[Gew%]	[Gew%]	
	00:00:30	27,5	28,9	0,0599	18,7	-0,24	28,7	98.0	32,7	-
	00:01:00	26,0	27,4	0,0437	18,7	-0.24	27,2	92,9	30.9	
	00:02:00	23,5	24,9	0,0325	18,7	-0.24	24,7	84.4	28,1	
	00:05:00	19,0	20,4	0,0222	18,7	-0,24	20,2	69,0	23.0	
	00:15:00	15,0	16,4	0,0136	18,7	-0,24	16,2	55,3	18,4	
ł:	00:45:00	10,5	11,9	0.0083	19,1	-0,17	11,7	40,1	13.4	
	02:00:00	7,5	8,9	0,0052	19,9	-0,02	8,9	30,4	10.1	
	06:00:00	3,0	4,4	0,0031	20,6	0.12	4,5	15,4	5,1	
	24:00:00	0,1	1.5	0.0016	21.5	0,30	1,8	6,1	2.0	Ì

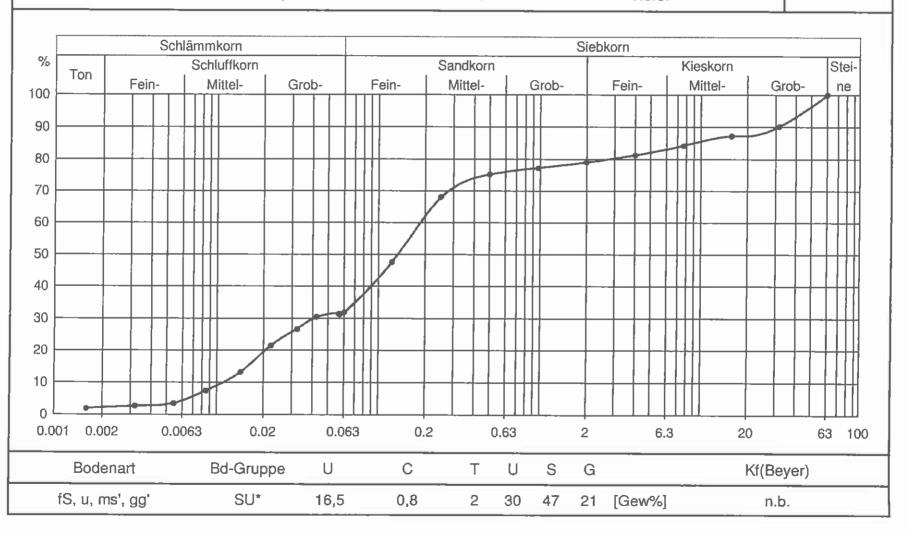
_							
	c	и	nr.	c	ь.	te	

Bodenart:	Schluff, feinsandig, schwach mittelkiesig, sch schwach grobkiesig, schwach feinkiesig	hwach miltelsandig,	
Kürzel:	U. fs, mg', ms', gg', fg'	Anteil	[Gew %]
Bodengruppe:	SU [*]	Т	2,97
Frostempfindlichkeitsklasse:	F3 (sehr frostempfindlich)	U	30,33
Verdichtungsfähigkeit:	mittel (V2)	S	33,67
U (Ungleichförmigkeitszahl):	82,2	Ğ	33,03
C (Krümmungszahl):	0,7	-	00100

Schüttkorn (n. Bieske, 1961):	8 - 16 mm
Filterschlitzweite (n. Bieske, 1961):	3,58 mm

Kf nach Beyer, 1964	(d10 <= 0.06)
Kf nach Hazen, 1893	(d10 zu klein)
Kf nach Zieschang, 1964	(d10 < 0.1)
Kf nach Seelheim, 1880	(d10 < 0.1)
Kf nach Mallet & Pacquant, 1954	2,73 E-07 (m/s)
KI nach Mallet & Pacquant, 1954 1	2,73 E-07 (m/s)
Kf nach Mallet & Pacquant, 1954 2	2,75 E-07 (m/s)
Traditional at addating 1004	2.75 E-07 (m/s)

schwach durchlässig schwach durchlässig


Kornsummenkurve nach DIN 18123

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076445 / BS 13-16/3, Rüti

Ort: HWS Emme

Datum: Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornverteilungsdaten und Belwerte 2797115 / Zusatzuntersuchungen Alti. 201

Ausdruck vom 06.12.2013 - 12:42

Probe: 131076445 / BS 13-16/3, Rüti

Siebung der Probe

Korngröße	Masse der Rückstände	Siebrückstände	Summe der Siebdurchgänge
[mm]	[9]	[Gew%]	[Gew%]
125	-	-	-
63	-	_	100,00
31,5	242,04	9,78	90,22
16	72,99	2,95	87,27
8	74,45	3,01	84.26
4	73,83	2,98	81,27
2	55.95	2.26	79,01
1	42,81	1,73	77,28
0.5	51,99	2,10	75,18
0,25	178,17	7,20	67,98
0,125	501,9	20,29	47.69
0.063	395,13	15,97	31,72
< 0,063	784,93	31,72	

Gesamttrockenmasse: 2474,19 g Summe: 2474.19 g

Siebverlust: Art der Siebung:

Nass

Bestimmung der Korngrößenverteilung durch Sedimentation Trockenmasse: 48,59 g Dispe

Trockenmasse: 48,59 g Korndichte: 2,670 g/cm³ Dispergierungsmittel: 0.5g Natriumpyrophosphat

Meniskuskorrektur: 1,4 g/cm³

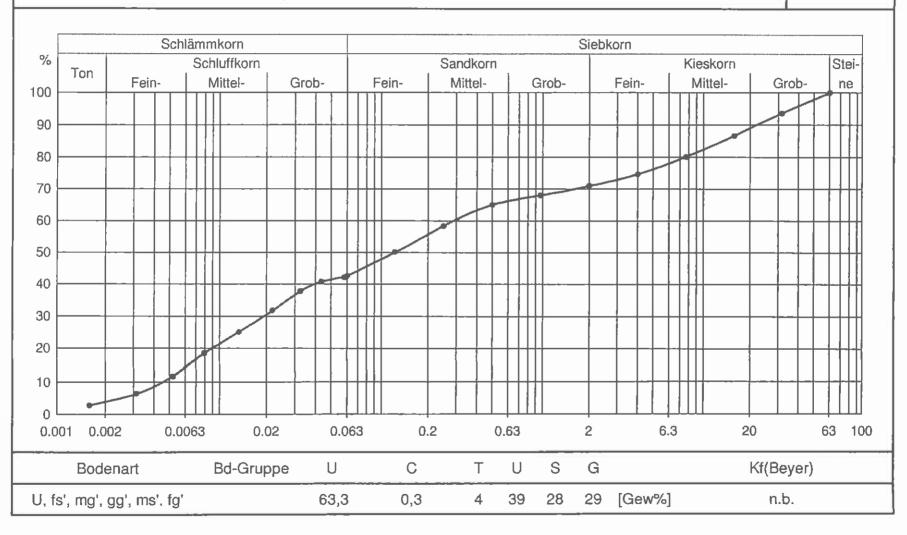
						-	-		
Uhrzeit	Zeit bis zur Ablesung	R'	R=R'+C _m	d	T	CT	R+C _T	a	a _{lot}
	[h:min:s]	[g/cm³]	[g/cm ³]	[mm]	[%]	[g/cm ³]	[g/cm ³]	[Gew%]	[Gew%]
	00:00:30	29,0	30,4	0,0583	18,1	-0,34	30,1	98.9	31.4
	00:01:00	28,0	29,4	0,0422	18,1	-0,34	29,1	95,6	30,3
	00:02:00	24,5	25,9	0,0321	18,1	-0,34	25,6	84,1	26,7
	00:05:00	19,5	20,9	0,0222	18,1	-0,34	20,6	67,7	21,5
	00:15:00	11,5	12,9	0,0144	18,1	-0,34	12,6	41,3	13,1
	00:45:00	6.0	7,4	0.0088	18,5	-0,27	7,1	23,5	7,4
	02:00:00	2,0	3,4	0,0056	19,6	-0,07	3,3	10,9	3,5
	06:00:00	1.0	2,4	0,0032	20,5	0.10	2,5	8,2	2,6
	24:00:00	0,1	1,5	0.0016	21,5	0,30	1,8	5,9	1,9

Beiwerte

Bodenart:	Feinsand, schluffig, schwach mittelsandig, schwach	n grobkiesig	
Kürzel:	fS, u, ms', gg'	Anteil	[Gew %]
Bodengruppe:	SU*	Т	2,13
Frostempfindlichkeitsklasse:	F3 (sehr frostempfindlich)	U	29,60
Verdichtungsfähigkeit:	mittel (V2)	S	47.29
U (Ungleichförmigkeitszahl):	16,5	G	20,99
C (Krūmmungszahl):	0,8		-,

Schüttkorn (n. Bieske, 1961):	5,6 - 8 mm
Filterschlitzweite (n. Bieske, 1961):	0,15 mm

Kf nach Beyer, 1964	$(d10 \le 0.06)$
Kf nach Hazen, 1893	(d10 zu klein)
Kí nach Zieschang, 1964	(d10 < 0.1)
Kf nach Seelheim, 1880	(d10 < 0.1)
Kf nach Mallet & Pacquant, 1954 1	4,72 E-07 (m/s)
Kf nach Mallet & Pacquant, 1954 2	4,36 E-07 (m/s)


4,72 E-07 (m/s) schwach durchlässig 4,36 E-07 (m/s) schwach durchlässig

Kornsummenkurve nach DIN 18123

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076451 / BS 13-17/3, Rüti Ort: HWS Emme

Datum: Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornverteilungsdaten und Beiwerte 2797115 / Zusatzuntersuchungen Alti. 201

Ausdruck vom 18.12.2013 - 10:54

Probe: 131076451 / BS 13-17/3, Rŭfi

Siebung der Probe

Korngröße [mm]	Masse der Rückstände [g]	Siebrûckstände	Summe der Siebdurchgänge [Gew%]
	leil —	(3044'- va)	[CEW76]
125	-	*	44
63	-	**	100,00
31.5	137,3	6,40	93,60
16	148,12	6,90	86,70
8	142,18	6,63	80.07
4	116,96	5,45	74,62
2	79.48	3.70	70,91
1	62,73	2,92	67,99
0,5	64,14	2,99	65,00
0,25	140.6	6,55	58,45
0,125	178,45	8,32	50.13
0.063	160,81	7,50	42,63
< 0,063	914,61	42,63	*

Gesamttrockenmasse: 2145,38 g Summe: 2145,38 g Siebverlust:

Art der Siebung: Nass

Bestimmung der Korngrößenvertellung durch Sedimentation

Trockenmasse: 45,48 g Korndichte: 2,670 g/cm³ Dispergierungsmittel: 0.5g Natriumpyrophosphat

Meniskuskorrektur: 1,4 g/cm³

	3	11.3.							
Uhrzeit	Zeit bis zur Ablesung	R'	R=R'+C _m	d	Т	Ст	R+C _T	а	a _{to1}
i	[h:min:s]	[g/cm ³]	[g/cm ³]	[mm]	[°C]	[g/cm ³]	[g/cm ³]	[Gew. %]	[Gew%]
	00:00:30	27,0	28,4	0,0605	18,8	-0,22	28,2	99,1	42,2
	00:01:00	26,0	27,4	0,0437	18,8	-0.22	27,2	95,6	40,7
	00:02:00	24.0	25,4	0.0321	18.8	-0,22	25,2	88,5	37,7
	00:05:00	20,0	21,4	0,0218	18,8	-0,22	21,2	74,5	31.7
	00:15:00	15,5	16,9	0,0135	18,8	-0.22	16,7	58,6	25,0
	00:45:00	11.0	12,4	0.0082	19,2	-0,15	12,3	43,1	18,4
	02:00:00	6,5	7,9	0,0053	20,2	0,04	7,9	27,9	11,9
Ì	06:00:00	2,5	3,9	0,0031	21,7	0,34	4.2	14,9	6,3
1	24:00.00	0,1	1,5	0.0016	21.6	0,32	1,8	6,4	2,7

Beiwerte

Bodenart:	Schluff, schwach feinsandig, schwach mittelkier schwach mittelsandig, schwach feinkiesig	sig, schwach grobkies	ig,
Kürzel:	U. fs', mg', gg', ms', fg'	Anteil	[Gew %]
Bodengruppe:	•	Т	3.87
Frostempfindlichkeitsklasse:	(n.b.)	U	38.76
Verdichtungsfähigkeit:	(n,b.)	S	28.28
U (Ungleichförmigkeitszahl):	63,3	G	29.09
C (Krümmungszahl):	Ε,0		

Schüttkorn (n. Bieske, 1961): 8 - 16 mm Filterschlitzweite (n. Bieske, 1961): 0,17 mm

 Kf nach Beyer, 1964
 (d10 <= 0.06)</td>

 Kf nach Hazen, 1893
 (d10 zu klein)

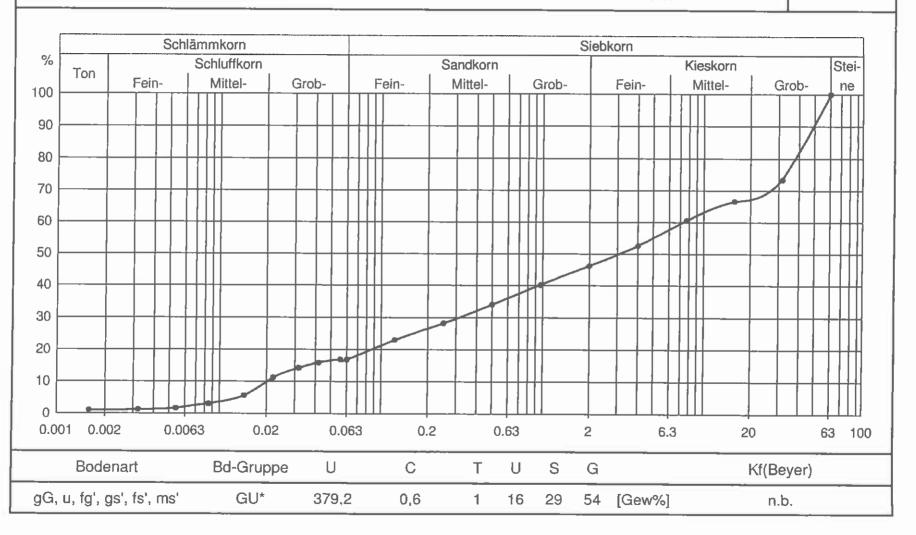
 Kf nach Zieschang, 1964
 (d10 < 0.1)</td>

 Kf nach Seelheim, 1880
 (d10 < 0.1)</td>

 Kf nach Mallet & Pacquant, 1954 1
 7,58 E-08 (m/s)

 Kf nach Mallet & Pacquant, 1954 2
 9,31 E-08 (m/s)

(m/s) schwach durchlässig (m/s) schwach durchlässig


Kornsummenkurve nach DIN 18123

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076452 / BS 13-17/4, Rüti

Ort: HWS Emme

Datum: Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornvertellungsdaten und Beiwerte 2797115 / Zusatzuntersuchungen Alti. 201 Ausdruck vom 06.12.2013 - 12:50

Probe: 131076452 / BS 13-17/4, Rüli

Siebung der Probe

Korngröße	Masse der Rückstände	Siebrückstände	Summe der Siebdurchgänge
[mm]	[9]	[Gew%]	[Gew%]
125	to to	-	_
63		-	100,00
31,5	582,78	26,56	73,44
16	151,98	6,93	66,51
8	131,85	6,01	60,51
4	173,1	7,89	52,62
2	139,87	6.37	46,24
1	130.65	5,95	40,29
0.5	138,15	6,30	33,99
0,25	127,69	5,82	28,17
0,125	115,21	5,25	22,92
0,063	135,14	6,16	16,76
< 0.063	367,86	16.76	

Gesamttrockenmasse: 2194,28 g Summe: 2194,28 g

Siebverlust:

Art der Siebung: Nass

Bestimmung der Korngrößenverteilung durch Sedimentation

Trockenmasse: 48,11 g Korndichte: 2,670 g/cm³ Dispergierungsmittel: 0.5g Natriumpyrophosphat

Meniskuskorrektur: 1,4 g/cm3

							9		
Uhrzeit	Zeit bis zur Ablesung	R'	R=R'+Cm	d	T	CT	R+C _T	а	a _{lol}
	[h:min:s]	[g/cm³]	[g/cm ³]	[mm]	[°C]	[g/cm ³]	[g/cm ³]	[Gew%]	[Gew%]
	00:00:30	28,5	29,9	0,0574	20,4	0.08	30.0	99.6	16.7
	00:01:00	27,0	28,4	0,0420	20,4	0,08	28,5	94.6	15.9
	00:02:00	24,0	25,4	0,0315	20,4	0,08	25.5	84.7	14,2
	00:05:00	18,5	19,9	0,0219	20,4	0,08	20,0	66,4	11.1
	00:15:00	8,5	9,9	0,0145	20,4	0,08	10.0	33,2	5,6
	00:45:00	4,0	5.4	0,0088	20,5	0,10	5,5	18,3	3,1
	02:00:00	1,5	2,9	0,0055	20,7	0.14	3,0	10.1	1,7
	06:00:00	0,5	1,9	0,0032	20,6	0,12	2.0	6,7	1,1
	24:00:00	0,0	1.4	0.0016	21,4	0,27	1.7	5,6	0.9

₿	e	i	W	e	ľ	te	ļ

Bodenart:	Grobkies, schluffig, schwach feinkiesig, schwach schwach feinsandig, schwach mittelsandig	h grobsandig.	·
Kürzel:	gG, u, fg', gs', fs', ms'	Anteil	[Gew %]
Bodengruppe:	GU*	7	0.99
Frostempfindlichkeitsklasse:	F3 (sehr frostempfindlich)	Ü	15.77
Verdichtungsfähigkeit:	gut bis mittel (V2)	S	29.48
U (Ungleichförmigkeitszahl):	379,2	Ğ	53.76
C (Krümmungszahl):	0.6		

Schüttkorn (n. Bieske, 1961):	8 - 16 mm
Filterschlitzweite (n. Bieske, 1961):	26,56 mm

Kf nach Beyer, 1964	$(d10 \le 0.06)$
Kf nach Hazen, 1893	(d10 zu klein)
Kf nach Zieschang, 1964	(d10 < 0.1)
Kf nach Seelheim, 1880	(d10 < 0.1)
Kf nach Mallet & Pacquant, 1954 1	1,40 E-05 (m/s)
Kf nach Mallet & Pacquant, 1954 ²	1,28 E-05 (m/s)

durchlässig durchlässig

Kornsummenkurve nach DIN 18123

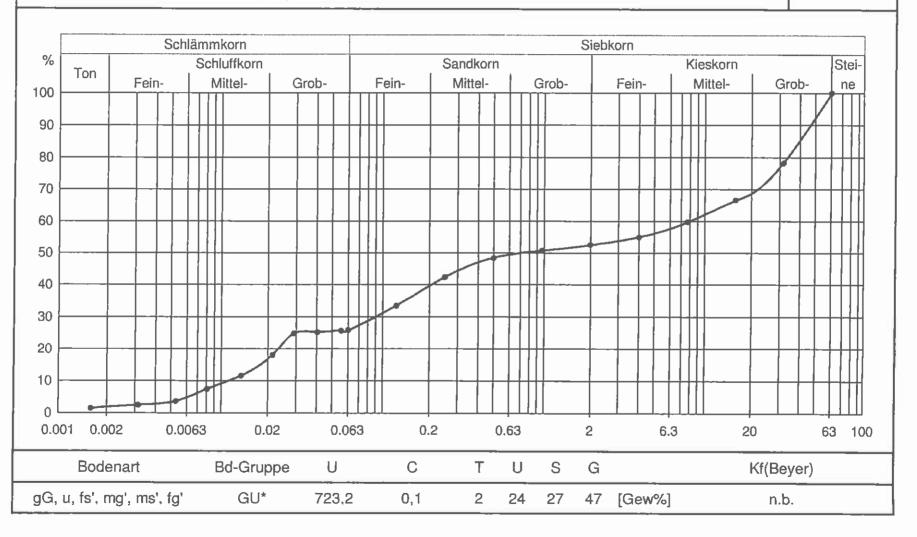
Datum:

Tiefe:

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076458 / BS 13-18/3, Rüti Ort: HWS Emme

Schlämmkorn Siebkorn Schluffkorn Sandkorn Stei-Kieskorn Ton Mittel-Grob-Mittel-Fein-Fein-Grob-Fein-Mittel-Grobne 100 90 80 70 60 50 40 30 20 10 0.001 0.002 0.0063 0.02 0.063 0.2 0.63 2 6.3 20 63 100 Bodenart **Bd-Gruppe** U C Т U S G Kf(Beyer) gG, u, fs', mg', ms', fg' GU* 723,2 0,1 47 [Gew%] 2 24 27 n.b.


Kornsummenkurve nach DIN 18123

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076458 / BS 13-18/3, Rüti

Ort: HWS Emme

Datum: Tiefe:

Kornsummenkurve nach DIN 18123

Datum:

Tiefe:

SGS

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076463 / BS13-19/3, Rüti

Ort: HWS Emme

Schlämmkorn Siebkorn Schluffkorn Sandkorn Stei-Kieskorn Ton Fein-Mittel-Grob-Fein-Mittel-Grob-Mittel-Fein-Grobne 100 90 80 70 60 50 40 30 20 10 0.001 0.002 0.02 0.0063 0.063 0.2 0.63 2 6.3 20 63 100 Bodenart **Bd-Gruppe** U C Τ U S G Kf(Beyer) U, gg, mg', fs', ms', fg' GU* 473,1 n.b. 46 [Gew%] 2 29 23 n.b.

SGS INSTITUT FRESENIUS GmbH Kornverteilungsdaten und Beiwerte 2797115 / Zusatzuntersuchungen Altl. 201

Ausdruck vom 13.12.2013 - 09:24

Probe: 131076463 / BS13-19/3, Rütl

Slebung der Probe

Korngröße [mm]	Masse der Rückstände [g]	Siebrückstände [Gew%]	Summe der Siebdurchgänge [Gew%]
125	_	,,	
63	-	-	100.00
31,5	559,71	21,25	78,75
16	180,31	6,85	71,90
8	202,14	7,67	64,23
4	171,31	6,50	57,73
2	98.63	3.74	53,98
1	69,57	2,64	51,34
0,5	72,26	2,74	48,60
0,25	141,22	5,36	43,24
0,125	152,58	5,79	37,44
0.063	161,66	6,14	31,30
< 0,063	824.54	31,30	

Gesamttrockenmasse: 2633,93 g Summe: 2633.93 g Siebverlust:

Art der Siebung: Nass

Bestlmmung der Korngrößenverteilung durch Sedimentation

Trockenmasse: 46,98 g Dispergierungsmittel: 0.5g Natriumpyrophosphat

Korndichte: 2,670 g/cm3 Meniskuskorrektur: 1,4 g/cm3

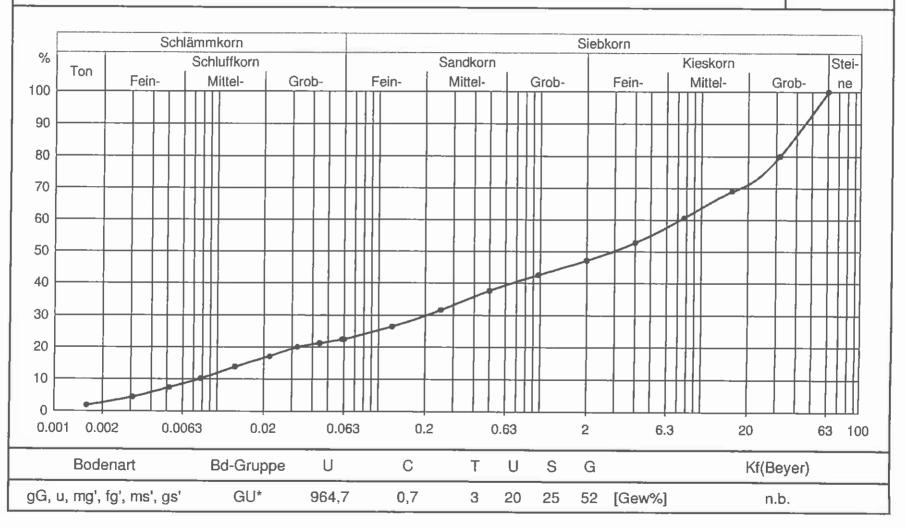
							9		
Uhrzeit	Zeit bis zur Ablesung	R'	R=R'+Cm	ď	Т	Ст	R+C _T	a	a _{lol}
	[h:min:s]	[g/cm ³]	[g/cm ³]	[mm]	[%]	[g/cm ³]	[g/cm ³]	[Gew%]	[Gew%]
	00:00:30	27,5	28,9	0,0579	21,7	0,34	29,2	99,5	31,1
	00:01:00	26,5	27,9	0,0418	21,7	0,34	28,2	96,1	30.1
	00:02:00	25,5	26,9	0,0302	21,7	0,34	27,2	92,7	29.0
	00:05:00	17,0	18,4	0,0221	21,7	0,34	18,7	63,8	20.0
ļ	00:15:00	10,0	11,4	0,0140	21,7	0,34	11.7	39,9	12,5
	00:45:00	5,0	6.4	0,0086	21,8	0,36	6,8	23,0	7,2
	02:00:00	2,0	3,4	0,0054	22,0	0,40	3,8	12,9	4,0
	06:00:00	0.5	1,9	0,0032	22,3	0.46	2,4	8,0	2,5
	24:00:00	0,0	1,4	0,0016	21,3	0,25	1,7	5.7	1.8

В	ei	W	e	r	te

Bodenart: Schluff, grobkiesig, schwach mittelkiesig, schwach feinsandig,				
	schwach mittelsandig, schwach feinkiesig			
Kürzel:	U, gg, mg', fs', ms', fg'	Anteil	[Gew %]	
Bodengruppe:	GU*	Т	2.00	
Frostempfindlichkeitsklasse:	F3 (sehr frostempfindlich)	U	29.31	
Verdichtungsfähigkeit:	gut bis mittel (V2)	S	22,68	
U (Ungleichförmigkeitszahl):	473,1	G	46,02	
C (Krümmungszahl):	n.b.			

Schüttkorn (n. Bieske, 1961): 8 - 16 mm Filterschlitzweite (n. Bieske, 1961): 12,60 mm

Kf nach Beyer, 1964 $(d10 \le 0.06)$ Kf nach Hazen, 1893 (d10 zu klein) Kf nach Zieschang, 1964 (d10 < 0.1)Kf nach Seelheim, 1880 Kf nach Mallet & Pacquant, 1954 1 (d10 < 0.1)5,62 E-07 (m/s) Kf nach Mallet & Pacquant, 1954 2 5.06 E-07 (m/s)


schwach durchlässig schwach durchlässig

Kornsummenkurve nach DIN 18123

Projekt: 2797115 / Zusatzuntersuchungen Altl. 201

Probenbez.: 131076464 / BS 13-19/4, Rüti Ort: HWS Emme

Datum: Tiefe:

SGS INSTITUT FRESENIUS GmbH Kornverteilungsdaten und Belwerte 2797115 / Zusatzuntersuchungen Altl. 201

Ausdruck vom 13.12.2013 - 09:36

Probe: 131076464 / BS 13-19/4, Rŭti

Siebung der Probe

Korngröße	Masse der Rückstände	Siebrückstände	Summe der Siebdurchgänge
[mm]	[g]	[Gew%]	[Gew%]
125	-	-	-
63	-	-	100,00
31.5	436,96	20,00	80,00
16	242,11	11,08	68,92
8	182,32	8,34	60,57
4	170,45	7,80	52,77
2	122,32	5.60	47,17
1	100,91	4,62	42,55
0,5	107,18	4,91	37,65
0,25	132,3	6,06	31,59
0,125	111,76	5,12	26,48
0.063	88,32	4,04	22,44
< 0,063	490.18	22,44	*

Gesamttrockenmasse: 2184,81 g Summe: 2184,81 g Siebverlust:

Art der Siebung: Nass

Bestimmung der Korngrößenverteilung durch Sedimentation

Trockenmasse: 43,93 g Korndichte: 2,670 g/cm3

Dispergierungsmittel: 0,5g Natriumpyrophosphat

Meniskuskorrektur: 1,4 g/cm3

Uhrzeit	Zeit bis zur Ablesung	R'	R=R'+C _m	d	Т	CT	R+C _T	а	a _{tot}
*************************	[h:min:s]	[g/cm ³]	[g/cm³]	[mm]	[%]	[g/cm ³]	[g/cm ³]	[Gew%]	[Gew%]
	00:00:30	26,0	27,4	0,0609	20,0	0,00	27,4	99.7	22,4
	00:01:00	24,5	25,9	0,0444	20,0	0.00	25.9	94,3	21,1
	00:02:00	23,0	24,4	0,0323	20,0	0.00	24.4	88.8	19,9
	00:05:00	19,5	20,9	0,0217	20,0	0,00	20,9	76.1	17,1
	00:15:00	15,5	16,9	0,0133	20,0	0,00	16,9	61,5	13,8
	00:45:00	11,0	12,4	0.0081	20,3	0,06	12.5	45.3	10,2
	02:00:00	7,5	8,9	0,0052	20,8	0,15	9,1	33.0	7.4
	06:00:00	3,5	4,9	0,0031	22,2	0,44	5,3	19,4	4,4
	24:00:00	0,5	1.9	0.0016	21,1	0.21	2,1	7.7	1.7

m			rte
ь.	elv	VΡ	ne

Bodenart:	Grobkies, schluffig, schwach mittelklesig, schwach feinkies schwach mittelsandig, schwach grobsandig	ig,	
Kürzel:	gG, u, mg', fg', ms', gs'	Anteil	[Gew %]
Bodengruppe:	GU*	T	2.60
Frostempfindlichkeitsklasse:	F3 (sehr frostempfindlich)	U	19.84
Verdichtungsfähigkeit:	gut bis mittel (V2)	S	24.74
U (Ungleichförmigkeitszahl): C (Krümmungszahl):	964,7 0,7	G	52,83

Schüttkorn (n. Bieske, 1961): 8 - 16 mm Filterschlitzweite (n. Bieske, 1961): 18,11 mm

Kf nach Beyer, 1964 $(d10 \le 0.06)$ Kf nach Hazen, 1893 (d10 zu klein) Kf nach Zieschang, 1964 (d10 < 0.1)Kf nach Seelheim, 1880 (d10 < 0.1)Kf nach Mallet & Pacquant, 1954 1 1,38 E-06 (m/s) Kf nach Mallet & Pacquant, 1954 2 1,19 E-06 (m/s)

durchlässig durchlässig Hochwasserschutz und Revitalisierung Emme Solothurn, Wehr Biberist bis Aare Sanierungsprojekt Deponie Rüti

Anhang 6.3

elementarer Kohlenstoff

SGS Institut Fresenius GmbH Hauptstrasse 174 CH-5742 Kölliken

Friedlipartner AG Geotechnik Altlasten Umwelt Nansenstr. 5 8050 ZÜRICH SCHWEIZ Prüfbericht 2029987 Auftrags Nr. 2797115 Kunden Nr. 10074212

Herr Dr. Lutz Zabel Telefon 0041 6273838-64 Fax 0041 6273838-78

Environmental Services

SGS Institut Fresenius GmbH Betriebsstätte Kölliken Hauptstrasse 174 CH-5742 Kölliken Dakks
Deutsche
Akkreditierungsstell
D-PL-14115-12-00

Kölliken, den 06.02.2014

Ihr Auftrag/Projekt: HWS Emme Ihr Bestellzeichen: 315.201.014 Ihr Bestelldatum: 07.11.2013

HWS Emme, Zusatzuntersuchungen Kehrichtdeponie 2013/14

Prüfzeitraum von 07.01.2014 bis 13.01.2014 erste laufende Probenummer 131076440 Probeneingang am 19.11.2013

SGS Institut Fresenius

Dr. Lutz Zabel Leiter Standort Maren Schwalm Laborleitung

INSTITUT FRESENIUS

HWS Emme 315.201.014

Prüfbericht Nr. 2029987 Auftrag Nr. 2797115

Seite 2 von 2 06.02.2014

Proben durch IF-Kurier abgeholt

Matrix: Feststoff

Probennummer

131076440

131076452

131076464

Bezeichnung

BS 13-15/4

BS 13-17 /4

BS 13-19 /4

HWS Emme: Rüti HWS Emme: Rüti HWS Emme: Rüti

Eingangsdatum:

19.11.2013

19.11.2013

19.11.2013

Parameter

Einheit

Bestimmungs Methode

-grenze

Feststoffuntersuchungen:

Restkohlenstoff

Masse-% TR

5,1

4,8

5,4

0,2 VGB-Blatt4.4.2.1 Hochwasserschutz und Revitalisierung Emme Solothurn, Wehr Biberist bis Aare Sanierungsprojekt Deponie Rüti

Anhang 6.4

Feinfraktionen

SGS Institut Fresenius GmbH Hauptstrasse 174 CH-5742 Kölliken

Friedlipartner AG Geotechnik Altlasten Umwelt Nansenstr. 5 8050 ZÜRICH SCHWEIZ Prüfbericht 2030544 Auftrags Nr. 2797115 Kunden Nr. 10074212

Herr Dr. Lutz Zabel Telefon 0041 6273838-64 Fax 0041 6273838-78

Environmental Services

SGS Institut Fresenius GmbH Betriebsstätte Kölliken Hauptstrasse 174 CH-5742 Kölliken DAKKS

Deutsche

Akkreditierungsstelle

D-PL-14115-12-00

Kölliken, den 07.02.2014

Ihr Auftrag/Projekt: HWS Emme Ihr Bestellzeichen: 315.201.014 Ihr Bestelldatum: 07.11.2013

HWS Emme, Zusatzuntersuchungen Kehrichtdeponie 2013/14

Prüfzeitraum von 28.01.2014 bis 06.02.2014 erste laufende Probenummer 140105963 Probeneingang am 09.12.2013

SGS Institut Fresenius

Dr. Lutz Zabel Leiter Standort Maren Schwalm Laborleitung

Seite 1 von 5

INSTITUT

HWS Emme 315.201.014 Prüfbericht Nr. 2030544 Auftrag Nr. 2797115 Seite 2 von 5 07.02.2014

Proben von Ihnen übersendet

Matrix: Boden

Probennummer Bezeichnung 140105963 BS 13-5/3 Fraktion < 1cm

140107006 BS 13-7/3 Fraktion < 1cm

140105965 BS 13-12/3 Fraktion < 1cm

Eingangsdatum:

KW-Index C10-C40

mg/kg TR

850

09.12.2013

09.12.2013

1600

10

DIN EN 14039

Parameter Einheit Bestimmungs Methode -grenze Feststoffuntersuchungen: Trockensubstanz Masse-% 98,6 98.0 96.1 0,1 **DIN ISO 11465** TOC Masse-% TR 2,8 2,4 8,4 0,1 **DIN EN 13137** Metalle im Feststoff: Antimon mg/kg TR < 5 7 < 5 5 **DIN-EN-ISO 11885** mg/kg TR Arsen 16 24 18 3 **DIN EN ISO 11885** Blei mg/kg TR 710 1000 710 5 **DIN EN ISO 11885** mg/kg TR Cadmium 3,3 6,5 2,0 0.5 **DIN EN ISO 11885** Chrom mg/kg TR 48 50 52 5,0 **DIN EN ISO 11885** Kobalt mg/kg TR 11 15 5 **DIN EN ISO 11885** Kupfer mg/kg TR 390 550 770 5 **DIN EN ISO 11885** Nickel mg/kg TR 29 53 84 10 **DIN EN ISO 11885** Quecksilber mg/kg TR < 0,1 < 0,1 0.4 0,1 **DIN EN 1483** Zink mg/kg TR 1200 1400 1000 10 **DIN EN ISO 11885**

610

INSTITUT FRESENIUS

HWS Emme 315.201.014				Prüfbericht Nr. 20 Auftrag Nr. 279711		Seite 3 von 5 07.02.2014
Probennummer Bezeichnung		140105963 BS 13-5/3 Fraktion < 1cm	140107006 BS 13-7/3 Fraktion < 1cm	140105965 BS 13-12/3 Fraktion < 1cm		
PAK (EPA) :						
Naphthalin	mg/kg TR	< 0,05	1,0	< 0,05	0,05	DIN ISO 18287
Acenaphthylen	mg/kg TR	< 0,05	0,09	0,07	0,05	DIN ISO 18287
Acenaphthen	mg/kg TR	< 0.05	0,28	0,07	0.05	DIN ISO 18287
Fluoren	mg/kg TR	0,07	0,48	0,14	0,05	DIN ISO 18287
Phenanthren	mg/kg TR	0,51	3,6	0,66	0,05	DIN ISO 18287
Anthracen	mg/kg TR	0,14	0,72	0,17	0,05	DIN ISO 18287
Fluoranthen	mg/kg TR	0,87	3,1	1,6	0,05	DIN ISO 18287
Pyren	mg/kg TR	0,71	2,4	1,3	0,05	DIN ISO 18287
Benz(a)anthracen	mg/kg TR	0,51	1,3	1,0	0,05	DIN ISO 18287
Chrysen	mg/kg TR	0,47	1,3	1,00	0,05	DIN ISO 18287
Benzo(b)fluoranthen	mg/kg TR	0,47	1,8	1,2	0,05	DIN ISO 18287
Benzo(k)fluoranthen	mg/kg TR	0,19	0,60	0,39	0,05	DIN ISO 18287
Benzo(a)pyren	mg/kg TR	0,32	1,3	0,91	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen	mg/kg TR	< 0,05	0,16	0,13	0,05	DIN ISO 18287
Benzo(g,h,i)perylen	mg/kg TR	0,16	0,64	0,50	0,05	DIN ISO 18287
Indeno(1,2,3-c,d)pyren	mg/kg TR	0,17	0,64	0,50	0,05	DIN ISO 18287
Summe PAK nach EPA	mg/kg TR	4,59	19,41	9,64		DIN ISO 18287
PCB:						
PCB 28	mg/kg TR	< 0,005	< 0,005	< 0,005	0,005	DIN 38414-20
PCB 52	mg/kg TR	< 0,005	< 0,005	< 0,005	0,005	DIN 38414-20
PCB 101	mg/kg TR	0,92	< 0,005	0,056	0,005	DIN 38414-20
PCB 138	mg/kg TR	3,3	0,051	0,085	0,005	DIN 38414-20
PCB 153	mg/kg TR	3,6	0,071	0,12	0,005	DIN 38414-20
PCB 180	mg/kg TR	3,8	0,043	0,050	0,005	DIN 38414-20
Summe 6 PCB (DIN)	mg/kg TR	11,62	0,165	0,311	1000 100 PRODUCT A 100 PROCESSOR	DIN 38414-20
Summe 6 PCB (incl. Faktor 4,3)	mg/kg TR	49,97	0,709	1,337	0,08	

INSTITUT

HWS Emme 315.201.014 Prüfbericht Nr. 2030544 Auftrag Nr. 2797115

Seite 4 von 5 07.02.2014

Proben von Ihnen übersendet

Matrix: Boden

Probennummer Bezeichnung 140105964 BS 13-15/4

Fraktion < 1cm

140107004 BS 13-17/4 Fraktion < 1cm

140107005 BS 13-19/4 Fraktion < 1cm

Eingangsdatum:

09.12.2013

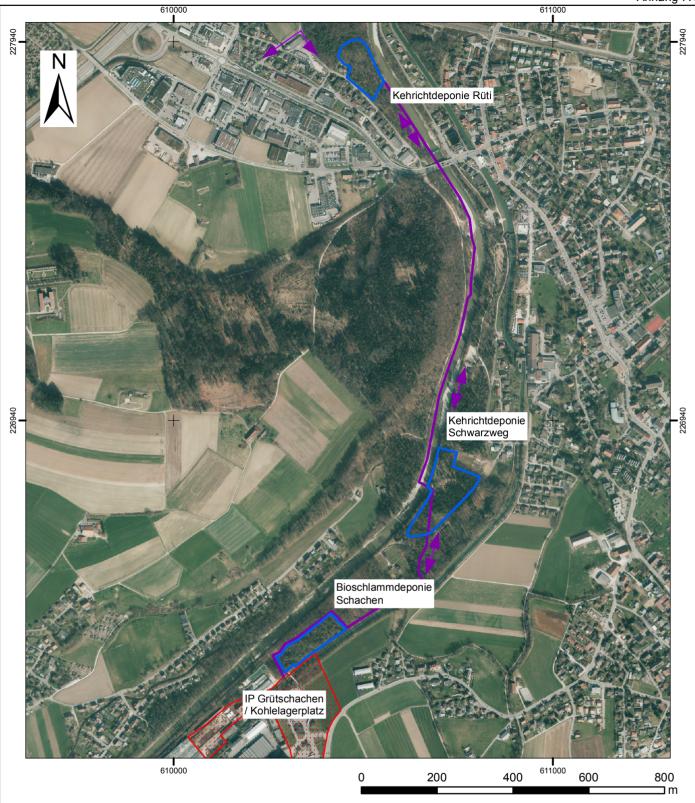
Einheit Parameter Bestimmungs Methode -grenze Feststoffuntersuchungen: Trockensubstanz Masse-% 99,5 99,9 99,8 0.1 **DIN ISO 11465** TOC Masse-% TR 6,8 4,3 6,7 0,1 **DIN EN 13137** Metalle im Feststoff: Antimon mg/kg TR 36 10 15 5 **DIN-EN-ISO 11885** Arsen mg/kg TR 30 31 27 3 **DIN EN ISO 11885** Blei mg/kg TR 1600 530 580 5 **DIN EN ISO 11885** Cadmium mg/kg TR 7,7 1,9 8,4 0,5 **DIN EN ISO 11885** Chrom mg/kg TR 120 200 300 5,0 **DIN EN ISO 11885** Kobalt mg/kg TR 23 5 **DIN EN ISO 11885** Kupfer mg/kg TR 370 6600 1400 5 **DIN EN ISO 11885** Nickel mg/kg TR 52 510 810 10 **DIN EN ISO 11885** Quecksilber mg/kg TR < 0,1 0,4 < 0,1 0,1 **DIN EN 1483** Zink mg/kg TR 820 950 870 10 **DIN EN ISO 11885** KW-Index C10-C40 mg/kg TR 2600 18000 17000 10 **DIN EN 14039**

INSTITUT FRESENIUS

HWS Emme 315.201.014

Prüfbericht Nr. 2030544 Auftrag Nr. 2797115

Seite 5 von 5


315.201.014				Auftrag Nr. 2797115		07.02.2014
Probennummer		140105964	140107004	140107005		
Bezeichnung		BS 13-15/4	BS 13-17/4	BS 13-19/4		
		Fraktion < 1cm	Fraktion < 1cm	Fraktion < 1cm		
PAK (EPA) :						
Naphthalin	mg/kg TR	0,39	0,39	0,11	0.05	DIN 100 40007
Acenaphthylen	mg/kg TR	< 0,05	0,15	0,06	0,05 0,05	DIN ISO 18287 DIN ISO 18287
Acenaphthen	mg/kg TR	0,55	0,23	0,11	0,05	DIN ISO 18287 DIN ISO 18287
Fluoren	mg/kg TR	0,77	0,35	0,17	0,05	DIN ISO 18287
Phenanthren	mg/kg TR	2,5	2,8	2,3	0,05	DIN ISO 18287
Anthracen	mg/kg TR	0,31	0,47	0,38	0,05	DIN ISO 18287
Fluoranthen	mg/kg TR	1,9	3,4	2,9	0,05	DIN ISO 18287
Pyren	mg/kg TR	1,6	2,9	2,7	0,05	DIN ISO 18287
Benz(a)anthracen	mg/kg TR	0,72	1,7	1,6	0,05	DIN ISO 18287
Chrysen	mg/kg TR	0,77	2,0	2,2	0,05	DIN ISO 18287
Benzo(b)fluoranthen	mg/kg TR	0,68	2,1	1,6	0,05	DIN ISO 18287
Benzo(k)fluoranthen	mg/kg TR	0,31	0,47	0,64	0,05	DIN ISO 18287
Benzo(a)pyren	mg/kg TR	0,41	1,3	0,87	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen	mg/kg TR	0,06	0,18	0,19	0,05	DIN ISO 18287
Benzo(g,h,i)perylen	mg/kg TR	0,21	0,67	0,48	0,05	DIN ISO 18287
Indeno(1,2,3-c,d)pyren	mg/kg TR	0,22	0,71	0,52	0,05	DIN ISO 18287
Summe PAK nach EPA	mg/kg TR	11,40	19,82	16,83	112200000	DIN ISO 18287
PCB:						
PCB 28	mg/kg TR	< 0,005	0,15	0,13	0,005	DIN 38414-20
PCB 52	mg/kg TR	< 0,005	3,3	0,23	0,005	DIN 38414-20
PCB 101	mg/kg TR	0,021	5,7	3,7	0,005	DIN 38414-20
PCB 138	mg/kg TR	0,017	5,0	2,7	0,005	DIN 38414-20
PCB 153	mg/kg TR	0,038	5,1	2,8	0,005	DIN 38414-20
PCB 180	mg/kg TR	0,026	3,4	0,95	0,005	DIN 38414-20
Summe 6 PCB (DIN)	mg/kg TR	0,102	22,65	10,51	.,	DIN 38414-20
Summe 6 PCB (incl.	mg/kg TR	0,439	97,40	45,19	0,08	301111 20
Faktor 4,3)						

Hochwasserschutz und Revitalisierung Emme Solothurn, Wehr Biberist bis Aare Sanierungsprojekt Deponie Rüti

Anhang 7

A7.1: Situationsplan Erschliessung

A7.2: Situationsplan Ausführung

Plan Erschliessung 1:10'000

Format: A4

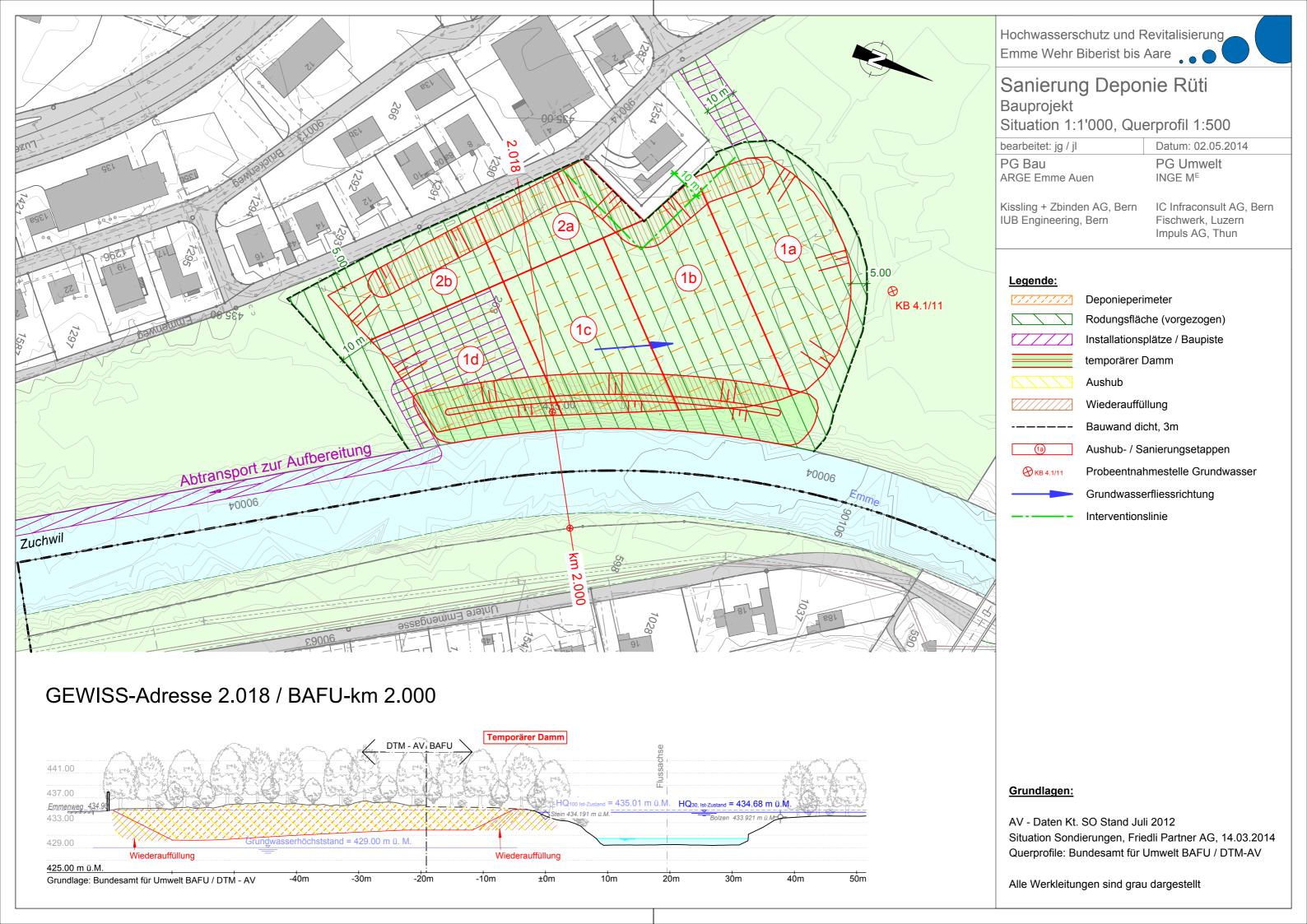
Plangrundlage: WMS SO!GIS

Perimeter sanierungsbedürftige Deponien

Erschliessung / Baupisten

Installationsplatz / Vor-Ort-Aufbereitung

FRIEDLIPARTNER AG


GEOTECHNIK ALTLASTEN UMWELT

Sanierungsprojekt inkl. Entsorgungskonzept (Bauprojekt)

HWS und Revitalisierung Emme Kehrichtdeponie Rüti Zuchwil

12.119.1.08

22.07.2014/mn

