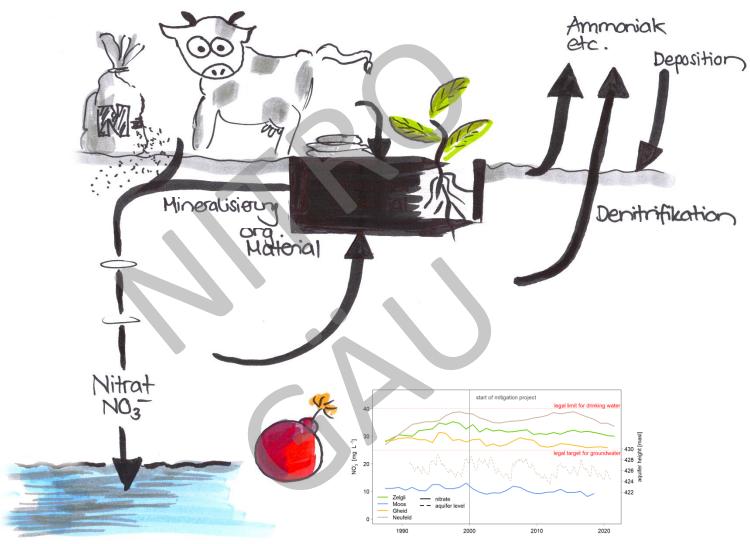
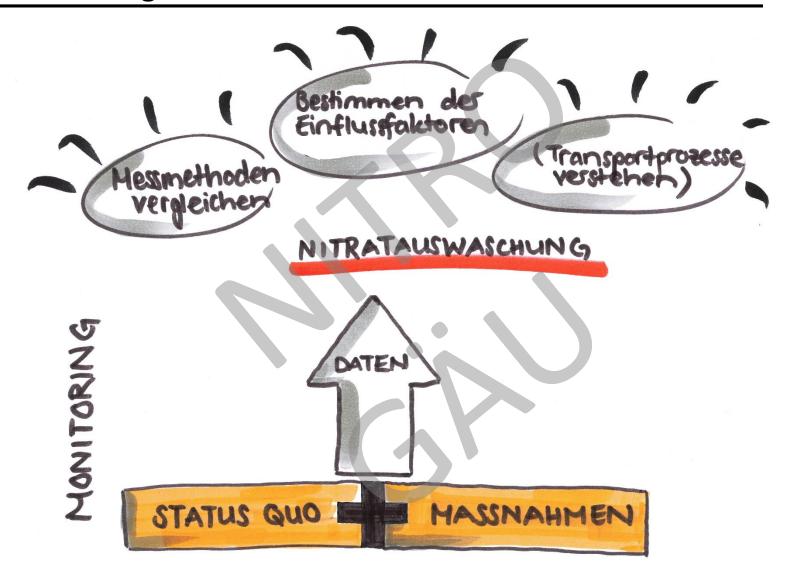


AP 1.2 Hydrologie & Optimierung der Bewirtschaftung im Ackerbau

April 2022 Hannah Wey (Centre for Hydrogeology and Geothermics, CHYN) hannah.wey@innetag.ch / +41 76 536 36 23

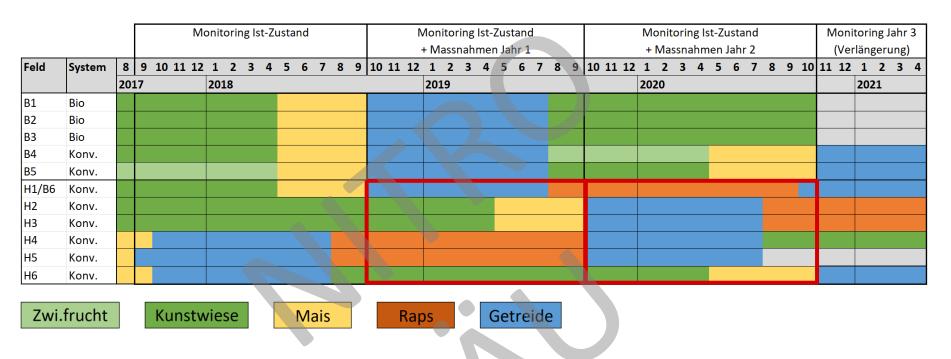


Einführung



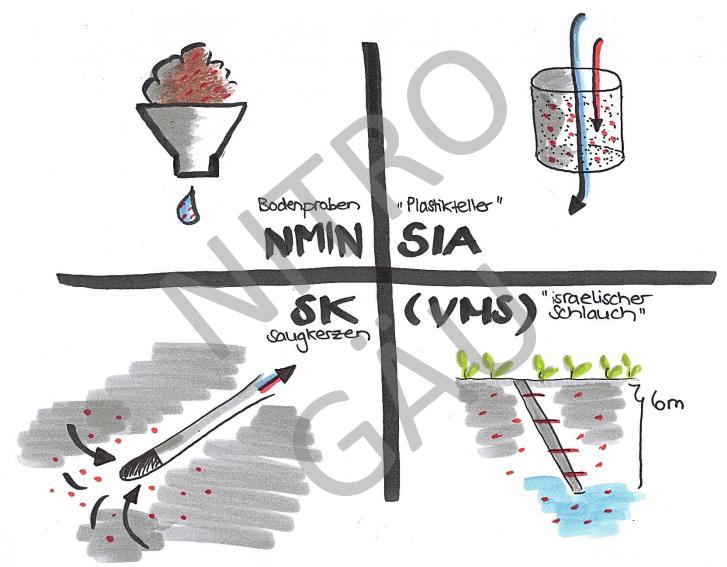
Problem

Zielsetzung



Versuchsaufbau

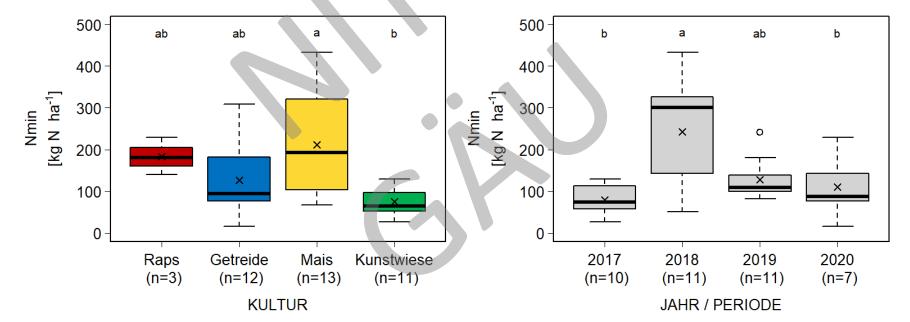
Felder & Fruchtfolgen



Massnahmen:

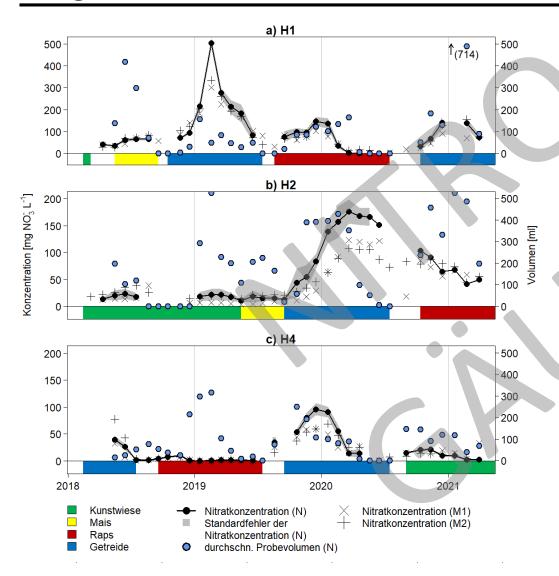
- Düngermenge → Reduktion
- Düngerart → ENTEC/CULTAN

Messinstrumente

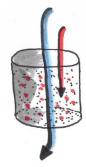

Resultate

Nmin Bodenproben

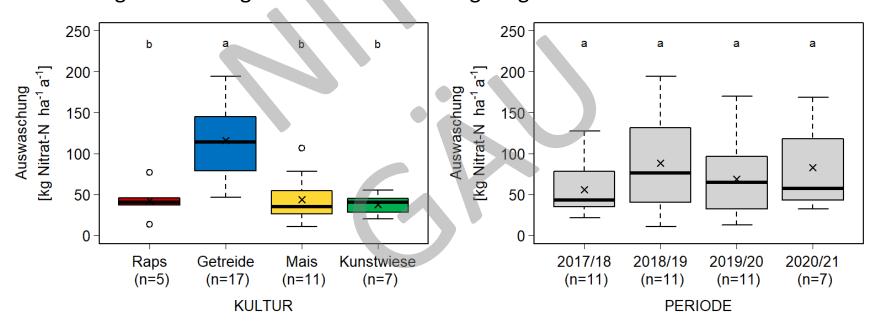
- Beprobungen im Oktober und Februar
- Herbst-Nmin nach Mais am höchsten / nach Kunstwiese am tiefsten
- Effekte: Wetters versus Fruchtfolge
- Frühling < Herbst: 70 % des Herbst-Nmin geht verloren



Herbst-Nmin mit Vorkultur in Farbe; ohne Massnahmenstreifen

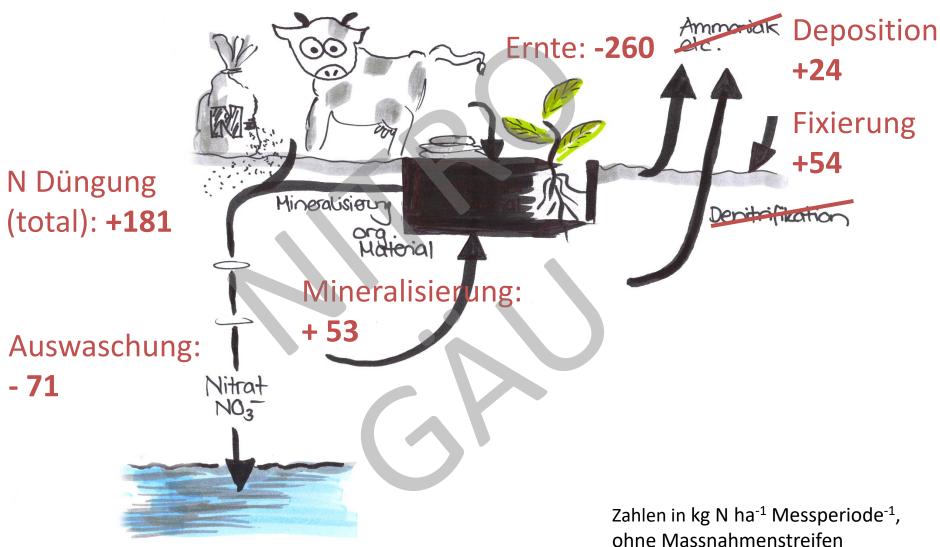

Saugkerzen

- monatliche Probenahme
- kleines Probevolumen im Sommer
 - saisonales Muster
 - steigende Konzentrationen im Herbst
 - Peaks im Winter
- hohe Peaks nachKW-Umbruch/Mais


SIA ("Plastikteller")

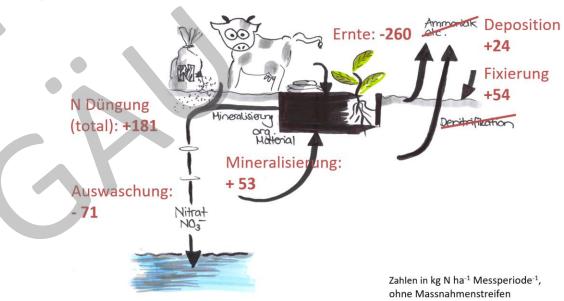
- jährliche Beprobung
- Auswaschung unter Getreide am höchsten, Jahreseffekt fehlt
- durchschnittliche Nitratauswaschung

71 kg N ha⁻¹ a⁻¹


- = 3 Mal der Zielwert (25 mg NO₃ L⁻¹) (nur offene Ackerfäche, ohne Gemüse, ohne Dauergrünland)
- bisherige Minderungsmassnahmen sind ungenügend

SIA-Auswaschung mit Hauptkultur in Farbe; ohne Massnahmenstreifen

Bilanzen & Massnahmen I



Bilanzen & Massnahmen II

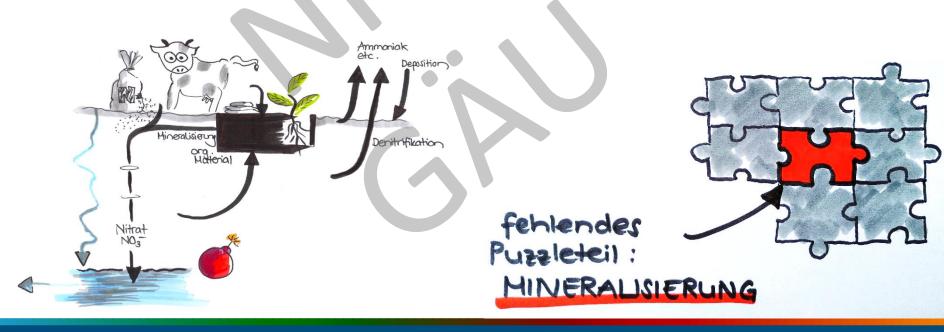
- Mineralisierung:
 158 kg N ha⁻¹ in 3 Messperioden
- Mineralisierung ist ein wichtiger Prozess!
 - überdurchschnittlicher Ertrag bei vorsichtiger Düngung
 - höchste Auswaschung nach KW-Umbruch/Mais
 - Düngungsmassnahmen kurzfristig (!!!) ohne klaren Effekt
 - → werden von Mineralisierung überdeckt

wichtigste Erkenntnisse

- Anbausystem: keine signifikanten Unterschiede bio konventionell
- <u>Wetter:</u> Messungen während trocken-warmen Jahren → Normszenario in wenigen Jahren
- <u>Messtechniken</u> zur Quantifizierung der Nitratauswaschung funktionieren
- keine sinkenden Nitrat-Konzentrationen in Pumpwerken seit Projektstart 2000
 → WARUM ???
- durchschnittliche <u>Nitratauswaschung</u>: 71 kg N ha⁻¹ a⁻¹ (ohne Massnahmenstreifen)
 - \rightarrow = 3 Mal der Zielwert (25 mg $NO_3^-L^{-1}$) (nur offene Ackerfäche, ohne Gemüse, ohne Dauergrünland)
 - → bisherige Minderungsmassnahmen sind ungenügend
- Mineralisierung ist ein entscheidender Prozess: ≈53 kg N ha-1 a-1

Diskussion

das hydrologische & biogeochemische Vermächtnis



wichtigste Beobachtungen II

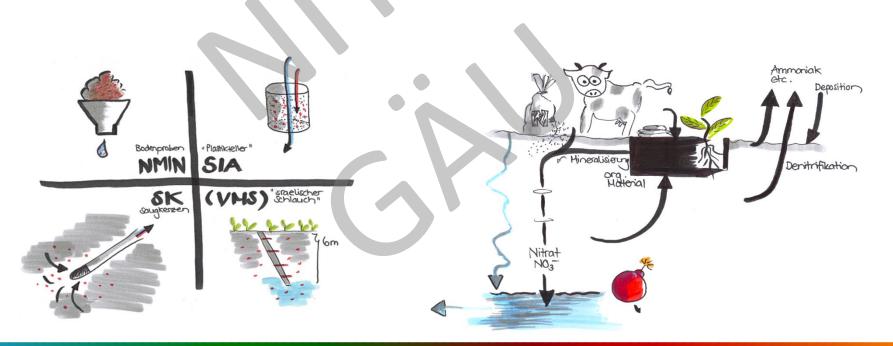
- Düngemassnahmen sind wirksam
- in kurzer Messperiode (4 Jahre) zu wenig deutlich sichtbar
- hoher und langfristiger Einfluss des Bodenpools (Mineralisierung)
 - → muss berücksichtigt werden
 - → effizientere Nutzung
- hydrologisches und biogeochemisches Vermächtnis beachten
 - → Prozessüberlagerungen

Messtechnik

Table 7 Advantages, difficulties and limitations of the three monitoring methods

	Self-Integrating Accumulators (SIA)	Nmin soil coring (Nmin)	Suction Cups (SCs)
Possible scientific god	- Comparison of several fields by crop or year - Comparison of strips with leaching mitigation strategies - Identification of the fertiliser fraction that is lost	Utentification of residual N in autumn as indicator of oss potential, e.g. with mitigation strategies - Estination of winter loss Spring Nmin value for adjustment of fertilisation	- Comparison with the legal nitrate concentration target in groundwater - Identification of hot moments of leaching during the year - Combination with water leaching models to identify N loss flux
Advantages	Result is area-related Upscaling to the field and comparison with N input is feasible Preferential flow is taken into account	- Result is area-related - Upscaling to the field and comparison with N input is feasible	Preparation of the samples only includes filtration Nitrate concentration is comparable to legal groundwater values Using Ion Chromatography, information on all anions and cauous become available.
Difficulties		- Ideal sampling date in autumn is delicate as it depends on temperature and rainfall	Careful installation needed to ensure direct soil contact of the cups - Unstable vacuum may occur because of a leaking tubing system - Limited information on water and N fluxes: A soil model is needed - Preferential flow is only partially captured, as the cups take the water from the soil matrix
Problematic factors for application	Upwelling soil water (stagnic soil properties)	High stone content in the soil profile	
Spatial resolution	Middle – high (versatile)	High (versatile)	Low
Temporal resolution	Low	Low - middle	High
Initial costs and time	Low	Low	High
Returning time per strip (without transport)	12 h/field/year	12 h/field/year	30 h/field/year
Sample preparation before analysis	Homogenisation + extraction of SIA material	Sieving, homogenisation and extraction of soil samples	Filtering of liquid samples
Dismantling costs	Low	None	High

Cypen Access | Ephdished. 06 December. 2021 |
Field-scale monitoring of nitrate leaching in agriculture: assessment of three methods |
International Conference of the Confere


October (pre-winter) and Mid-February (post-winter), and Suction Cups (SCs) complemented by a HYDRUS 1D model. The monitoring, conducted from 2017 to 2020 in the Gäu Valley in

Wey, H., Hunkeler, D., Bischoff, W.-A., Bünemann, E.K. (2022): **In-situ monitoring of nitrate leaching in agriculture: Assessment of three field methods**. Environmental Monitoring & Assessment 194. https://doi.org/10.1007/s10661-021-09605-x

wichtigste Beobachtungen I

- alle Messmethoden (Nmin, SIA, SK, VMS) geeignet
 - → wissenschaftliche Zielsetzung & Budget beachten
- Kombination der Messmethoden führt zu Wissensgewinn
 - Einfluss von präferentiellem Fluss (SK SIA)
 - späte Assimilation im Herbst, mikrobielle Immobilisierung, Denitrifikation im Winter (Nmin - SK)
- Herbst-Nmin als Indikator f
 ür Auswaschung

Besten Dank!!!

CHYN: Daniel Hunkeler, Vincent Gruber, Roberto Costa, Laurent Marguet, Landon Halloran, Ines, Maeva, Simone, Jeremy, Dan, Léa, Valentin, Marie-Louise, Kalliopi, Álvaro, Morgan, and Thanushika

FiBL: Else Bünemann-König, Hanna Frick, Bernhard Stehle, Anton Kuhn, Adolphe Munyangabe, Frédéric Perrochet, Moritz Sauter, Lucilla Agostini, etc.

Terraquat: Wolf-Anno Bischoff, Andreas Schwarz & Co.

Kanton Solothurn: Rainer Hug, Magdalena Gisiger, Bernhard Strässle, Anja Latscha

Sensoil Innovations, Israel: Ofer Dahan, Michael Kugel

Familie & Freunde

Ein grosses Dankeschön geht an alle beteiligten

